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Abstract

We have studied the effects of concomitant blockade of 5-HT3 and GABAA receptors on acetylcholine (ACh) release in the
frontal cortex of rats with a selective cholinergic lesion. Lesions were performed by microinjection of the cholinergic toxin 192
IgG-saporin into the nucleus basalis magnocellularis. Single treatment with either the 5-HT3 receptor antagonist ondansetron,
0.1 lg/kg, or the GABAA receptor benzodiazepine site antagonist flumazenil, 10 mg/kg, did not affect ACh release. However, the
combined ondansetron þ flumazenil administration significantly increased ACh release to a similar extent as a depolarising stimu-
lus with K+, 100 mM, at both 7 and 30 days post-lesion. Cortical perfusion with the combined ondansetron þ flumazenil treat-
ment also increased [3H]ACh efflux ‘‘in vitro’’ 30 days after lesion, suggesting that local events within the frontal cortex may
participate in the interaction of ondansetron with GABAergic neurons, modulating ACh release in situations of cholinergic
hypoactivity. No differences in the expression of 5-HT3 and GABAA receptors in the frontal cortex were found after the choliner-
gic lesion. These results suggest that a combined ondansetron þ flumazenil treatment would contribute to restoring a diminished
cholinergic function and may provide a basis for using this treatment in the therapy of cognitive disorders associated with
degeneration of the cholinergic system.
# 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Disruption of basal forebrain cholinergic pathways

and consequent cortical cholinergic denervation is one

of the hallmarks of Alzheimer’s disease (AD) and other

neurodegenerative conditions such as Parkinson’s dis-

ease, dementia with Lewy bodies or vascular dementia

(Michaelis, 2003; Terry and Buccafusco, 2003). This

cholinergic dysfunction in AD has been largely related

to cognitive disturbances (Perry et al., 1999). The choli-

nergic hypothesis of memory has led to multiple studies

attempting cholinergic replacement therapy in these

neurodegenerative diseases, and nowadays, activation
and restoration of cholinergic function remains a major
objective in the development of pharmacological
approaches towards the treatment of cognitive dysfunc-
tions associated with aging and dementia (see review by
Terry and Buccafusco, 2003).

There is a wide body of evidence to suggest that
serotonin (5-HT) plays an important role in learning
and memory processes (see review Buhot et al., 2000).
Biochemical and anatomical studies have shown a
functional interaction between serotonergic and choli-
nergic systems (Maura et al., 1992; Cassel and Jeltsch,
1995) and therefore, serotonergic receptors could
modulate the activity of the cholinergic system to coop-
erate in the regulation of cognitive processes (Barnes
et al., 1989; Cassel and Jeltsch, 1995). In particular, the
involvement of 5-HT3 receptors in learning and mem-
ory has been repeatedly suggested and 5-HT3 receptor
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antagonists, such as ondansetron, have been described
as potential cognitive enhancers in the treatment of
dementia (Costall and Naylor, 1997; Meneses, 1998).
In addition to the effects on cognition, 5-HT3 receptor
antagonists have also been shown to be useful in the
treatment of non-cognitive disorders, such as anxiety
(Ye et al., 2001), that occur frequently in AD. More-
over, 5-HT3 receptors seem to be preserved in the ill-
ness (Barnes et al., 1990).

Previous studies from our group have shown that the
5-HT3 receptor antagonist ondansetron produces an
enhancement in ACh release in the rat cerebral cortex
and this effect is potentiated by GABAA receptor
antagonists, such as bicuculline and flumazenil, both
‘‘in vitro’’ and ‘‘in vivo’’ (Ramirez et al., 1996; Diez-Ariza
et al., 1998, 2002). Moreover, when evaluated for
effects on cognition, a full reversal of the learning
impairment induced by scopolamine was found after the
combined treatment with ondansetron and flumazenil
(Diez-Ariza et al., 2003).

It is hypothesised here that concomitant blockade of
5-HT3 and GABAA receptors will be effective in facil-
itating ACh release in situations of cholinergic hypoac-
tivity. Therefore, in the present study, the ability of
single or combined treatment with ondansetron and
flumazenil to induce ACh release has been evaluated in
rats with a selective cholinergic lesion. Possible
mechanisms implicated in the releasing effect of these
drugs have also been investigated.
2. Materials and methods

2.1. Drugs

The following compounds were used: ondansetron
(Vita, Spain); flumazenil, neostigmine bromide, hemi-
cholinium-3, acetylthiocholine iodide (Sigma, UK);
[methyl-3H]choline chloride (86 Ci/mmol), [9-methyl-3H]
BRL 43694 (81 Ci/mmol), (PerkinElmer, USA); 192
IgG Saporin (Chemicon International Inc., USA);
[methylamine-3H]muscimol (7.4 Ci/mmol), (Amersham
Pharmacia, UK). Inorganic salts and other reagents
were from Merck and Sigma.

Ondansetron was dissolved in saline and flumazenil
was dissolved by adding 0.1% Tween-80 and then
adjusting the solution to its final volume with saline.
2.2. Animal housing

Male Wistar rats weighing 230–250 g were used.
Animals were kept at constant room temperature
(21 � 1

v
C) and relative humidity (55 � 5 %) with a

12-h light/dark cycle (dark from 8 p.m.) and ad libitum
access to food and water. All the experiments were car-
ried out in strict compliance with the recommendations
of the EU (DOCE L 358/1 18/2/1986) for the care and
use of laboratory animals.

At the beginning of the study rats were allocated
randomly to one of the experimental groups con-
stituted by controls, sham-operated rats and rats with
192 IgG-saporin lesions.
2.3. Surgery

All surgical procedures were conducted under aseptic
conditions. Rats were anaesthetised with a mixture of
ketamine (10 mg/kg, i.p.; Ketasol, Parke-Davis, USA)
and xylazine (0.3 mg/kg, i.p.; Rompun, Bayer, Germany)
and placed in a stereotaxic frame (Kopf, USA), with
the incisor bar set 3.5 mm below the interaural line.
one microlitre of the immunotoxin 192 IgG-Saporin
(0.067 lg/ll/hemisphere; Torres et al., 1994) was
infused bilaterally into the nucleus basalis magnocellu-
laris (NBM) of the basal forebrain at the following
coordinates (from bregma): AP �0.9 mm, ML�
2:9 mm, DV �6.5 mm, according to the atlas of Paxinos
and Watson (1982). Sham animals received equivalent
amounts of saline.

Post-lesion survival times were established at 7 and
30 days.
2.4. Verification of lesions

To assess the extent of the lesion, different choliner-
gic markers were measured in the frontal cortex. Acet-
ylcholinesterase (AChE) activity was measured in the
frontal cortex according to the colorimetric method
described by Wang et al. (1999). The high-affinity chol-
ine uptake (HACU) system was determined according
to the radiometric method of Lapchak and Hefti
(1991). Choline acetyltransferase (ChAT) activity assay
was performed according to the method of Ricceri et al.
(2002).

Results are expressed as percentage of controls.
2.5. Acetylcholine release ‘‘in vivo’’

Microdialysis probes were implanted into the right
frontal cortex at the following coordinates: AP 3.2 mm,
ML 0.5 mm, DV �3.5 mm. The dialysis probes, had a
diameter of 250 lm and an exposed dialysis membrane
(Cuprophan, Applied Neuroscience, UK) of 3 mm.

Dialysis experiments were conducted during daytime
24 h after probe implantation surgery. The probes were
perfused at a constant flow rate of 1.0 ll/min, using a
microperfusion pump (CMA, Sweden), with cerebro-
spinal fluid containing (in mM): NaCl 120, KCl 1.4,
CaCl2, 1.2, MgCl2 0.83, and NaHCO3 20, in a potass-
ium phosphate buffer (1.3 mM; pH 7.4). The acet-
ylcholinesterase inhibitor neostigmine bromide (1 lM)
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was added to the perfusion solution in order to prevent
degradation of ACh. Dialysate was discarded during
the first 120-min equilibration period and then col-
lected every 15 min. After collection of three baseline
fractions, tested drugs were administered i.p. The doses
of drugs used were selected according to previous
experiments in non-lesioned animals (Diez-Ariza et al.,
2002, 2003). In another set of experiments, animals
were perfused with KCl (100 mM) through the dialysis
probe. Animals were never used in more than one
dialysis session. Following the dialysis experiments, the
accurate placement of the probes was verified post-mor-
tem by gross examination of coronal sections.

ACh content in the dialysis samples was determined
using high-performance liquid chromatography
(HPLC) with electrochemical detection as previously
reported (Rosenblad and Nilsson, 1993). ACh content
was calculated by comparing with a 1 pmol standard.
The sensitivity limit (signal-to-noise ratio > 2) was
50 fmol.

2.6. Acetylcholine release ‘‘in vitro’’

Induced K+-evoked [3H]ACh efflux was measured as
previously described (Ramı́rez et al., 1996). In brief,
after labelling the tissue with [3H]choline (3 ll/ml, 81
Ci/mmol), aliquots (150 ll) of packed slices were
added to each chamber of a Brandel Superfusion-1000
apparatus and superfused with Krebs-Ringer bicarbon-
ate buffer containing the choline reuptake inhibitor
hemicholinium-3 (1 lM). Fractions were collected at
3-min intervals for a total of 60 min. At 12 min (S1) and
45 min (S2) after equilibration, the slices were depo-
larised by changing the superfusion fluid for 6 min to a
solution containing 20-mM KCl. Ondansetron and/or
flumazenil were added 15 min before S2. Tritium con-
tent was assayed by liquid scintillation spectroscopy.
S1 and S2 were calculated as K+-stimulated tritium
increase over basal efflux. Results were expressed as
S2/S1 ratio.

2.7. Binding assays

All the measurements were assayed in duplicate and
the data was subjected to Scatchard analysis in order
to determine receptor density (Bmax) and dissociation
constant (Kd). The amount of protein in each tissue
was assessed according to the method of Bradford
(1976).

2.7.1. [9-methyl-3H]BRL 43694 binding to 5-HT3
receptors

Membranes were prepared according to the method
of Nelson and Thomas (1989). BRL 43694 binding
assays contained 20 ll of [9-methyl-3H]BRL 43694
(concentrations ranged from 0.1 to 3 nM) and BRL
(100 lM) to determine non-specific binding, 100 ll of
tissue preparation and 700 ll of 50 mM HEPES
(pH 7.7) in 1-ml final volume. The assays were incu-
bated for 10 min on ice and then rapidly filtered
through Wathman GF/C glass fibre filters. Filters were
measured by liquid scintillation spectroscopy.
2.7.2. [methylamine-3H]muscimol binding to GABAA
receptors

Membranes were prepared according to the method
of Green et al. (1996). Muscimol binding assays con-
tained 20 ll of [methylamine-3H]muscimol (concentra-
tions ranged from 2.5 to 50 nM), GABA (100 lM) to
determine non-specific binding and 160 ll of tissue
preparation (dilution 1:50) in 200-ll final volume. The
assay was incubated for 10 min on ice and then rapidly
filtered through Whatman GF/B glass fibre filters. Filters
were measured by liquid scintillation spectroscopy.
2.8. Statistical analysis

Normality was checked using Shapiro-Wilks’s test
(p > 0:05) prior to any other statistical analysis.

The effect of lesion on cholinergic markers (AChE,
ChAT and HACU levels), binding parameters (Bmax,
Kd) and [3H]ACh release was analysed using one-way
ANOVA followed by Tukey’s tests. The same statisti-
cal analysis was used to compare control with sham (7
and 30 days) animals.

In microdialysis experiments, ACh content in each
sample was presented as mean � S:E:M: percentage of
the average baseline level calculated from the first three
samples in each animal group. Baseline levels of ACh
release were compared using one-way ANOVA fol-
lowed by Tukey’s test. The statistical analysis of the
effect of 5-HT3 antagonist ondansetron (treatment 1)
and GABAA antagonist flumazenil (treatment 2) on
ACh outflow was assessed using a two-way ANOVA
(treatment 1 � treatment 2) with time as the repeated
measure, followed by Tukey’s test.

Summed effects of treatment over the course of an
experiment were measured by determining the area
under the curve (AUC, GraphPad Prism v. 3.02). AUC
values were compared using a one-way ANOVA fol-
lowed by Fisher’s test for comparisons between control
and experimental groups.
3. Results

3.1. Characterisation of the selective cholinergic lesion

Injection of 192 IgG-saporin into the NBM caused
an overall decrease in the activity of the cholinergic
markers in the frontal cortex. As summarised in
Table 1, at both 7 and 30 days after lesion, ChAT and
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AChE levels were significantly reduced to approxi-
mately 50% of the control values (one-way ANOVA,
Fð3;117Þ ¼ 109:46, p < 0:001; Fð3;33Þ ¼ 19:46, p < 0:001,

respectively). Significant decreases in HACU values
were also found (one-way ANOVA, Fð3;18Þ ¼ 11:79,

p < 0:001). No statistical differences were found
between control and sham groups in ChAT, AChE and
HACU levels.
3.2. ACh release ‘‘in vivo’’ from the frontal cortex
of lesioned rats

As shown in Table 1, rats with cholinergic lesion of
NBM showed a significant decrease, at both 7 and 30
days post-lesion, in basal ACh efflux relative to control
values (one-way ANOVA, Fð3;79Þ ¼ 10:73, p < 0:001).

Seven days after a selective cholinergic lesion, the
time course of ACh release after single or combined
treatment with ondansetron and flumazenil is presented
in Fig. 1 (top panel). Selective blockade of 5-HT3

receptor after administration of ondansetron, 0.1 lg/kg
i.p., did not affect the basal ACh outflow, although, a
non-significant peak of 35% over baseline was
observed. Similarly, systemic administration of a selec-
tive GABAA receptor antagonist, flumazenil, 10 mg/kg,
i.p., also failed to significantly increase ACh efflux.
However, combined treatment with ondansetron and
flumazenil significantly enhanced ACh release (two-way
ANOVA, Fð3;54Þ ¼ 2:91, p < 0:05). Moreover, cumulat-
ing the release over fractions revealed (one-way
ANOVA; Fð3;20Þ ¼ 2:97, p ¼ 0:05) a significant effect of

the combined treatment compared to single administra-
tions (2300:85 � 336:60, 2355:02 � 625:23, 3639:83�
391:99 fmol ACh/105 min, for ondansetron, flumazenil
and the combined treatment, respectively).

Similarly, at longer post-lesion times (30 days), single
administration of ondansetron or flumazenil did not
modify ACh outflow from the frontal cortex of
lesioned rats 30 days after the cholinergic lesion. How-
ever, the combined treatment of ondansetron+-
Fig. 1. Time-course of the ACh releasing effect of single or com-

bined treatment with ondansetron and flumazenil in the frontal cor-

tex of rats 7 (top panel) and 30 (bottom panel) days after a selective

cholinergic lesion in the NBM. Basal levels of ACh were

304:35 � 15:69 and 313:38 � 16:29 fmol=15 ll in animals 7 and 30

days after the lesion, respectively. Data is mean � S:E:M: percentages

of the baseline calculated from the overall three first basal samples

(n ¼ 6 8 per group). OND, ondansetron, 0.1 lg/kg, i.p.; FLU, flu-

mazenil, 10 mg/kg, i.p. �p < 0:05 or better vs. basal values (Two-way

ANOVA followed by Tukey’s test).
Table 1

Effect of a cholinergic lesion in the NBM on cholinergic parameters in the rat frontal cortex
Animal

group

%
ChAT
 %AChE H
ACU (dpm)
 Basal ACh release ‘‘in

vivo’’, (fmol/15 ll)

B

v

asal ACh release ‘‘in

itro’’, (dpm)
Control 1
00:00 � 7:62
 102:61 � 1:57 7
55:66 � 37:56
 464:15 � 24:76 2
443:08 � 115:49
SAPO 7 days
 50:96 � 4:40�
 52:89 � 4:25�� 5
77:94 � 34:54�
 304:35 � 15:69�� 1
053:39 � 45:62��
SAPO 30 days
 54:99 � 3:93�
 55:06 � 2:73�� 5
04:99 � 3:03�
 313:38 � 16:29�� 1
185:73 � 46:61��
SAPO, rats with a selective cholinergic lesion induced by injection of 192 IgG-saporin into the NBM. ChAT, cholinacetyltransferase; AChE,

acetylcholinesterase; HACU, high-affinity choline uptake. Data shown as mean � S:E:M. Control value for ChAT activity was

159:54 � 26:94 nmol ACh=h=g tissue. Control value for AChE absorbance was 0:28 � 0:32. Percentage was calculated in relation to control

values.

No differences were found between sham animals at either 7 or 30 days post-lesion and non-lesioned animals, therefore, for illustrative pur-

poses only, these values have been combined in one Control group.0
� p < 0:05 vs. Control (ANOVA followed by Tukey’s test); n ¼ 15 30 per group.
�� p < 0:001 vs. Control.
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flumazenil enhanced the peak releasing effect (two-way
ANOVA, Fð3;45Þ ¼ 3:66, p < 0:01; Fig. 1, bottom panel).
Total ACh release, expressed as AUC, was also signifi-
cantly higher (one-way ANOVA, Fð2;13Þ ¼ 3:69, p ¼ 0:05)

after the combined treatment (5292 � 1725 fmol
ACh/ll/min) vs. single treatment with ondansetron
(1837 � 892 fmol ACh/ll/min) or flumazenil (1883�
398 fmol ACh/ll/min). Cumulating release over frac-
tions in the combined treatment group was also signifi-
cantly increased (one-way ANOVA; Fð3;23Þ ¼ 3:86,

p < 0:05; 1519 � 486, 2220 � 225, 3236 � 469 fmol
ACh/105 min, for ondansetron, flumazenil and the
combined treatment, respectively).

Infusion through the dialysis probe of a local stimu-
lus of 100 mM KCl during 30 min produced significant
increases in ACh outflow over basal values in control
and lesioned rats (Fig. 2), both at 7 (two-way ANOVA,
Fð3;54Þ ¼ 7:64, p < 0:01) and 30 days after a selective

cholinergic lesion (Fð3;44Þ ¼ 0:63, p < 0:01). Peak increa-

ses in ACh release after the combined treatments were
similar to those produced by a depolarizing stimulus
with KCl.
3.3. Effect of ondansetron and flumazenil on K+-evoked
[3H]ACh release

Basal [3H]ACh release in lesioned rats was signifi-
cantly diminished (Table 1) at both 7 and 30 days after
the lesion (one-way ANOVA, Fð3;259Þ ¼ 57:49,
p < 0:001).

Three different concentrations of ondansetron (0.01,
0.1 and 1 lM) and flumazenil (1, 10 and 50 lM) were
tested in their ability to release [3H]ACh in lesioned
animals.
Seven and 30 days after cholinergic lesion of NBM,
none of the concentrations of ondansetron or flumazenil
tested showed a significant intrinsic effect on the
K+-evoked [3H]ACh efflux from frontal cortex slices
(data not shown), although some concentrations
showed a trend towards an increased ACh release, e.g.,
flumazenil (10 lM) increased S2/S1 ratio from
1:05 � 0:08 (control) up to 1:30 � 0:14 in 30 days
lesioned animals. The concentrations of single treat-
ments with ondansetron or flumazenil that yielded
maximal, although non-significant [3H]ACh release,
were selected to check the effect of the combined treat-
ment on ‘‘in vitro’’ ACh release.

The combined treatment with ondansetron (0.1 lM)
and flumazenil (10 lM) yielded a non-significant
increase in [3H]ACh levels 7 days after the lesion. How-
ever, at the longer post-lesion time of 30 days, con-
comitant superfusion with ondansetron and flumazenil
was able to significantly increase cortical ACh release
in lesioned animals, and S2/S1 ratio raised from
1:05 � 0:08 (control) to 1:53 � 0:16 (combined treat-
ment with ondansetron and flumazenil, one-way
ANOVA, Fð3;85Þ ¼ 5:1, p < 0:001; Fig. 3).
3.4. Effect of a selective cholinergic lesion on [3H]BRL
43694 and [3H]Muscimol binding in the rat frontal
cortex

As illustrated in Table 2, cholinergic lesion of the
NBM did not show any effect on [3H]BRL 43694 bind-
ing in the frontal cortex (one-way ANOVA, ns).

Similarly, the selective cholinergic lesion of the NBM
did not affect [3H]Muscimol binding in the frontal cor-
tex either 7 or 30 days after lesion (one-way ANOVA,
ns), although a non-significant 19% increase in
GABAA receptor density, expressed as Bmax, relative to
controls, was found 7 days post-lesion.
Fig. 2. Effects of K+ and a combined administration of ondanse-

tron and flumazenil on maximum cortical ACh release ‘‘in vivo’’ in

non-lesioned control rats (as reported by Diez-Ariza et al., 2003)

compared to rats with a selective cholinergic lesion (SAPO). Data is

mean � S:E:M: percentages of the baseline calculated from the over-

all three first basal samples (n ¼ 6 8 per group). K: K+, 100 mM;

OND: ondansetron, 0.1 lg/kg, i.p.; FLU: flumazenil, 10 mg/kg, i.p.

All increases were statistically significant vs. their correspondant

basal values (Two-way ANOVA followed by Tukey’s test).
Fig. 3. Effect of single or combined administration of ondansetron

and flumazenil on K+-evoked [3H]ACh release in slices from frontal

cortex of rats 7 and 30 days after a selective cholinergic lesion in the

NBM. Values are presented as mean � S:E:M: (n ¼ 12 14 per

group). CTL: control lesioned rats; OND: ondansetron, 0.1 lM;

FLU: flumazenil, 10 lM; �p < 0:05 vs. control values (One-way

ANOVA followed by Tukey’s test).
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4. Discussion

Previous neurochemical and behavioural studies
from our group support the notion that concomitant
blockade of 5-HT3 and GABAA receptors enhances
learning in animal models of cognitive dysfunction
through an enhancement of cholinergic neurotransmis-
sion (Ramirez et al., 1996; Diez-Ariza et al., 1998,
2002, 2003). In the present work it was found that
combined treatment with 5-HT3 and GABAA receptor
antagonists was able to significantly increase ACh
release in situations of cholinergic hypoactivity.

Cholinergic neurons in the NBM give rise to a dense
network of cholinergic fibres innervating the entire cor-
tical mantle (Wainer and Mesulam, 1990). Partial cor-
tical cholinergic deafferentiation was achieved by
intraparenchymal infusion of the selective cholinergic
immunotoxin, 192 IgG-Saporin, into the NBM (Heckers
et al., 1994; Torres et al., 1994). The post-lesion time
of 7 days was used in this study because it has been
described that 7 days after lesion, cholinergic damage is
entirely achieved (Fadel et al., 1996). The post-lesion
time of 30 days was also selected to allow for the poss-
ible development of long-term compensatory mechan-
isms acting to restore ACh levels after cholinergic
lesions (Cossette et al., 1993). Under our experimental
conditions, a significant decrease in cholinergic func-
tion was achieved, as reflected by significant decreases
in cholinergic markers in the frontal cortex of lesioned
animals similar to those previously described after this
type of lesion (Wenk et al., 1994; Rossner et al., 1995;
Lacalle et al., 1998).

As expected (Fadel et al., 1996), a decrease in basal
cortical ACh level was found at both post-lesion times.
However, ACh release ‘‘in vivo’’ is reduced after the
lesion to a lesser extent than ChAT or AChE activity.
These findings suggest that surviving cholinergic neu-
rons may up-regulate ACh turnover ‘‘in vivo’’ to com-
pensate for cholinergic denervation. It has been
described that following partial destruction of afferent
cholinergic fibres that innervate different brain regions,
such as the hippocampus, residual cholinergic neurons
are able to up-regulate their capacity to synthesise and
store ACh ‘‘in vivo’’ (Lapchak et al., 1991) or even that
incomplete lesions of the NBM produced increases in
basal ACh release (Mcgaughy et al., 2002). The ques-
tion about the responsiveness of neurons surviving
lesions to the combined treatment was addressed next.
The doses of drugs used were selected according to our
previous studies, in which the combined treatment with
ondansetron, 0.1 lg/kg, and flumazenil, 10 mg/kg,
showed a maximal effect on cortical ACh release ‘‘in
vivo’’ (Diez-Ariza et al., 2002) and was able to reverse
scopolamine-induced learning (Diez-Ariza et al., 2003).
Interestingly, and at both 7 and 30 days after lesion,
concomitant administration of ondansetron with flu-
mazenil significantly increased ACh release (expressed
as maximum release, cumulated release or AUC) even
though single treatment with either drug was ineffec-
tive. As might be expected, the increase in ACh release
after the combined treatment in lesioned animals was
lower than in control animals (Diez-Ariza et al., 2002).
However, it should be noted that the releasing effect of
the combined treatment was similar to the effect of a
high depolarizing stimulus, such as KCl (100 mM),
known to produce a maximal ACh release both in
young or aged rats (Herzog et al., 2003) or after a cho-
linergic lesion (Rosenblad and Nilsson, 1993).

When considering the mechanisms responsible for
the effects of the combined ondansetron þ flumazenil
treatment, it is possible to speculate that there is a
blockade of the inhibitory influence of GABA neurons
by ondansetron. GABA-type neurons in the basal fore-
brain have been found to be directly excited by 5-HT
(Alreja, 1996) and the co-existence of 5-HT3 transcripts
with GABA immunoreactivity in several areas of the
telencephalon, including the basal forebrain, has also
been reported (Morales and Bloom, 1997). This block-
ade might be produced on the soma of neurons orig-
inating from the NBM, but also on local intrinsic
mechanisms within the cortex.

In an attempt to elucidate the contribution of local
cortical mechanisms to the releasing effect of the treat-
ment with ondansetron þ flumazenil, ACh release
induced by these drugs was studied ‘‘in vitro’’ in cortical
slices from lesioned animals. The concentrations of
ondansetron and flumazenil that produced maximal,
although non-significant ACh release, were similar to
Table 2

Effect of a selective cholinergic lesion in the NBM on 5-HT3 and GABAA receptor densities in the rat frontal cortex
Animal group [5
-HT3]
 [GABAA]
Bmax (fmol/mg protein)
 Kd (nM) B
max (fmol/mg protein)
 Kd (nM)
Control 2
3:95 � 1:57
 1:83 � 0:24 4
23:52 � 26:43
 7:69 � 0:46
SAPO 7 days 2
5:10 � 2:00
 2:29 � 0:29 4
85:01 � 31:40
 7:39 � 1:22
SAPO 30 days 1
8:66 � 1:59
 2:18 � 0:70 4
09:02 � 22:58
 9:99 � 1:07
SAPO, animals with a selective cholinergic lesion induced by injection of 192 IgG-saporin into the NBM. Data expressed as mean � S:E:M:;

n ¼ 6 11 per group. No differences were found between sham animals at either 7 or 30 days post-lesion and non-lesioned animals, therefore, for

illustrative purposes only, these values have been combined in one Control group.
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those used in previous studies in non-lesioned animals
(Diez-Ariza et al., 1998). A significant enhancement of
ACh release after the combined treatment was found
only at the post-lesion time of 30 days. In light of these
observations it is possible to speculate that at short
post-lesion times, the contribution of local events to the
releasing effect is minimal. However, at longer post-
lesion times, local compensatory mechanisms could be
responsible for the significant effect on ACh release after
ondansetron þ flumazenil treatment. In relation to this
idea, behavioural studies have hypothesised that, in
situations of cholinergic hypoactivity, the serotonergic
system could be involved in local mechanisms to com-
pensate for the loss of cholinergic innervation (Richter-
Levin and Segal, 1996; Harkany et al., 2000).

It is even possible to speculate about a regulation in
the expression of 5-HT3 and GABAA receptors as part
of these compensatory mechanisms. However, choliner-
gic lesions failed to alter the density of these receptors,
suggesting that 5-HT3 and GABAA receptors are loca-
ted in neurons, either extrinsically or intrinsically to the
cortex, that survive the lesions (Eckenstein et al., 1988).
Only a non-significant 15–20% increase in GABAA

receptor density in the frontal cortex was observed at 7
days post-lesion. Similar increases were found after a
non-selective cholinergic lesion with ibotenic acid
(Rossner et al., 1995) or intracerebroventricular
infusion of 192 IgG-Saporin (Rossner et al., 1994).

Following the cholinergic hypothesis of dementia, it is
possible to suggest that the combined treatment of
ondansetron þ flumazenil should be evaluated using a
cognition test in animals with selective cholinergic
lesions. However, even tough selective cholinergic dam-
age has been described after 192 IgG-saporin lesions,
only modest deficits in mnemonic tasks have been
reported (Torres et al., 1994; Baxter et al., 1996; Power
et al., 2002). It has been speculated that cognitive
mechanisms are mediated via cortical ACh, pointing to
a role for this neurotransmitter system in the processing
of behaviourally relevant sensory information e.g. atten-
tion and arousal. It has also been hypothesised that cor-
tical ACh modulates the general efficacy of the cortical
processing of sensory or associational information.
Regardless of the mechanism, cholinergic replacement
therapy nowadays remains the major strategy for the
treatment of cognitive dysfunctions in AD (Michaelis,
2003; Terry and Buccafusco, 2003).

In conclusion, the present results show that the com-
bined treatment with ondansetron and flumazenil is
capable of significantly enhancing ACh release in situa-
tions of cholinergic hypoactivity, such as the initial
phases of AD. Drugs such as 5-HT3 receptor antago-
nists, which are devoid of severe adverse side effects
(Goodin and Cunningham, 2002), may provide a more
effective treatment strategy, particularly in the elderly,
than compounds acting directly on cholinergic trans-
mission, which have proved to be disappointing as
therapeutic agents, because of problematic side effects,
narrow effective dose ranges and short duration of
action (Inglis, 2002). Taken together, the present
results might be of particular interest in the treatment
of neurodegenerative diseases associated with a choli-
nergic dysfunction.
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