12 research outputs found

    Intramolecular hydrogen bond activation: Thiourea-organocatalyzed enantioselective 1,3-dipolar cycloaddition of salicylaldehyde-derived azomethine ylides with nitroalkenes

    Full text link
    An organocatalytic strategy for the synthesis of tetrasubstituted pyrrolidines with monoactivated azomethine ylides in high enantiomeric excess and excellent exo/endo selectivity is presented. The key to success is the intramolecular activation via hydrogen bonding through an o-hydroxy group, which allows the dipolar cycloaddition to take place in the presence of azomethine ylides bearing only one activating group. The intramolecular hydrogen bond in the azomethine ylide and the intermolecular hydrogen bond with the catalyst have been demonstrated by DFT calculations and mechanistic proofs to be crucial for the reaction to proceedThe Spanish Government (CTQ2015-64561-R, CTQ2016- 76061-P) and the European Research Council (ERC-CG, contract number 647550) are acknowledged. We acknowledge the generous allocation of computing time at the CCC (UAM). S.D.-T. gratefully acknowledges the “Ramón y Cajal” program (RYC-2010-07019). Financial support from the Spanish Ministry of Economy and Competitiveness, through the “Maria de Maeztu” Program of Excellence in R&D (MDM- 2014-0377

    Asymmetric Synthesis of 1,2-Diamines bearing Tetrasubstituted Centers from Nonstabilized Azomethine Ylides and <i>N</i>‑Sulfinylketimines under Brønsted Acid Catalysis

    No full text
    The first asymmetric cycloaddition of nonstabilized azomethine ylide and <i>N</i>-sulfinylimines is presented. In reactions with aryl–alkyl and heteroaryl–alkyl ketimines, excellent diastereoselectivities and good yields are obtained in all cases, regardless of the electronic character of the substituents at the aromatic rings. Moreover, the cycloadducts obtained can easily be deprotected in acid media, giving access to free 1,2-diamines which are prevalent in many natural and pharmaceutical products

    Additional file 11: Table S8. of Cross-disorder comparative analysis of comorbid conditions reveals novel autism candidate genes

    No full text
    Identities of the differentially expressed PBC, along with their corresponding q-values, the biological processes where they are involved and the comorbid disorders where they are implicated. Also, PBC significantly differentially expressed in each dataset and in all the three datasets. (XLSX 210 kb

    Additional file 9: Figure S3. of Cross-disorder comparative analysis of comorbid conditions reveals novel autism candidate genes

    No full text
    A. The complete network of autism candidate genes. The MDAG genes are highlighted in yellow and their interactions in red; these are the genes that occur in one or more of the autism sibling comorbid disorders, circumscribed in Fig. 1. B. The highly interconnected subcomponent conformed by the MDAG genes, separated from the autism network. (TIF 406700 kb

    Data_Sheet_1_Advancements in veterinary medicine: the use of Flowgy for nasal airflow simulation and surgical predictions in big felids (a case study in lions).PDF

    No full text
    Flowgy is a semi-automated tool designed to simulate airflow across the nasal passage and detect airflow alterations in humans. In this study, we tested the use and accuracy of Flowgy in non-human vertebrates, using large felids as the study group. Understanding the dynamics of nasal airflow in large felids such as lions (Panthera leo) is crucial for their health and conservation. Therefore, we simulated airflow during inspiration through the nasal passage in three lions (Panthera leo), two of which were siblings (specimens ZPB_PL_002 and ZPB_PL_003), without breathing obstructions. However, one of the specimens (ZPB_PL_001) exhibited a slight obstruction in the nasal vestibule, which precluded the specimen from breathing efficiently. Computed tomography (CT) scans of each specimen were obtained to create detailed three-dimensional models of the nasal passage. These models were then imported into Flowgy to simulate the airflow dynamics. Virtual surgery was performed on ZPB_PL_001 to remove the obstruction and re-simulate the airflow. In parallel, we simulated the respiration of the two sibling specimens and performed an obstructive operation followed by an operation to remove the obstruction at the same level and under the same conditions as the original specimen (ZPB_PL_001). Thus, we obtained a pattern of precision for the operation by having two comparable replicas with the obstructed and operated specimens. The simulations revealed consistent airflow patterns in the healthy specimens, demonstrating the accuracy of Flowgy. The originally obstructed specimen and two artificially obstructed specimens showed a significant reduction in airflow through the right nostril, which was restored after virtual surgery. Postoperative simulation indicated an improvement of >100% in respiratory function. Additionally, the temperature and humidity profiles within the nostrils showed marked improvements after surgery. These findings underscore the potential of Flowgy in simulating nasal airflow and predicting the outcomes of surgical interventions in large felids. This could aid in the early detection of respiratory diseases and inform clinical decision-making, contributing to improved veterinary care and conservation efforts. However, further research is needed to validate these findings in other species and explore the potential of integrating Flowgy with other diagnostic and treatment tools in veterinary medicine.</p

    Additional file 13: Table S9. of Cross-disorder comparative analysis of comorbid conditions reveals novel autism candidate genes

    No full text
    Complete list of NBC, along with their q-values, MDAG interactors and comorbid disorders where they are present. Also, NBC significantly differentially expressed in each dataset and in all the three datasets. (XLSX 185 kb
    corecore