296 research outputs found

    Cross-correlating the Microwave Sky with Galaxy Surveys

    Full text link
    We present results for the cross-correlation between the WMAP 1st-year cosmic microwave background (CMB) anisotropy data and optical galaxy surveys: the APM and SDSS DR1 catalogs. Our measurement of a positive CMB-galaxy correlation on large angles (\theta > 4 deg) yields significant detections of the Integrated Sachs-Wolfe (ISW) effect and provides a new estimate of dark-energy in the universe, \Omega_\Lambda=0.69-0.86 (2 \sigma range). In addition, the correlated signal on small angles (\theta<1 deg) reveals the imprint left by hot intra-cluster gas in the CMB photons: the thermal Sunyaev-Zeldovich (SZ) effectComment: 7 pages. Invited talk at XVth Rencontres de Blois (France): "Physical Cosmology", June 2003. References adde

    The GRB/SN Connection: An Improved Spectral Flux Distribution for the Supernova Candidate Associated with GRB 970228

    Full text link
    We better determine the spectral flux distribution of the supernova candidate associated with GRB 970228 by modeling the spectral flux distribution of the host galaxy of this burst, fitting this model to measurements of the host galaxy, and using the fitted model to better subtract out the contribution of the host galaxy to measurements of the afterglow of this burst.Comment: To appear in Proc. of the 10th Annual October Astrophysics Conference in Maryland: Cosmic Explosions, 4 pages, LaTe

    The GRB/SN Connection: An Improved Spectral Flux Distribution for the SN-Like Component to the Afterglow of GRB 970228, the Non-Detection of a SN-Like Component to the Afterglow of GRB 990510, and GRBs as Beacons to Locate SNe at Redshifts z = 4 - 5

    Get PDF
    We better determine the spectral flux distribution of the supernova candidate associated with GRB 970228 by modeling the spectral flux distribution of the host galaxy of this burst, fitting this model to measurements of the host galaxy, and using the fitted model to better subtract out the contribution of the host galaxy to measurements of the afterglow of this burst. Furthermore, we discuss why the non-detection of a SN1998bw-like component to the afterglow of GRB 990510 does not necessarily imply that a SN is not associated with this burst. Finally, we discuss how bursts can be used as beacons to locate SNe out to redshifts of z = 4 - 5.Comment: To appear in Proc. of the 5th Huntsville Gamma-Ray Burst Symposium, 5 pages, LaTe

    Detection of the ISW and SZ effects from the CMB-Galaxy correlation

    Full text link
    We present a cross-correlation analysis of the WMAP cosmic microwave background (CMB) temperature anisotropies and the SDSS galaxy density fluctuations. We find significant detections of the angular CMB-galaxy correlation for both the flux limited galaxy sample (z~0.3) and the high redshift (z ~ 0.5) color selected sample. The signal is compatible with that expected from the integrated Sachs-Wolfe (ISW) effect at large angles (\theta > 3deg) and the Sunyaev-Zeldovich (SZ) effect at small scales (\theta < 1 deg). The detected correlation at low-z is in good agreement with a previous analysis using the APM survey (z~0.15). The combined analysis of all 3 samples yields a total significance better than 3 sigma for ISW and about 2.7 \sigma for SZ, with a Compton parameter y~10^(-6). For a given flat LCDM model, the ISW effect depends both on the value of \Omega_\Lambda and the galaxy bias b. To break this degeneracy, we estimate the bias using the ratio between the galaxy and mass auto-correlation functions in each sample. With our bias estimation, all samples consistently favor a best fit dark-energy dominated model: \Omega_\Lambda ~ 0.8, with a 2 \sigma error \Omega_\Lambda=0.69-0.86.Comment: Accepted by ApJL. New figure and further discussion about error estimate

    Missing Lensed Images and the Galaxy Disk Mass in CXOCY J220132.8-320144

    Get PDF
    The CXOCY J220132.8-320144 system consists of an edge-on spiral galaxy lensing a background quasar into two bright images. Previous efforts to constrain the mass distribution in the galaxy have suggested that at least one additional image must be present (Castander et al. 2006). These extra images may be hidden behind the disk which features a prominent dust lane. We present and analyze Hubble Space Telescope (HST) observations of the system. We do not detect any extra images, but the observations further narrow the observable parameters of the lens system. We explore a range of models to describe the mass distribution in the system and find that a variety of acceptable model fits exist. All plausible models require 2 magnitudes of dust extinction in order to obscure extra images from detection, and some models may require an offset between the center of the galaxy and the center of the dark matter halo of 1 kiloparsec. Currently unobserved images will be detectable by future James Webb Space Telescope (JWST) observations and will provide strict constraints on the fraction of mass in the disk.Comment: 10 pages, 8 figures, 6 tables. Minor changes, version accepted for publication in Ap

    Measuring the growth of matter fluctuations with third-order galaxy correlations

    Full text link
    Measurements of the linear growth factor DD at different redshifts zz are key to distinguish among cosmological models. One can estimate the derivative dD(z)/dln⁥(1+z)dD(z)/d\ln(1+z) from redshift space measurements of the 3D anisotropic galaxy two-point correlation Ο(z)\xi(z), but the degeneracy of its transverse (or projected) component with galaxy bias bb, i.e. Ο⊄(z)∝ D2(z)b2(z)\xi_{\perp}(z) \propto\ D^2(z) b^2(z), introduces large errors in the growth measurement. Here we present a comparison between two methods which break this degeneracy by combining second- and third-order statistics. One uses the shape of the reduced three-point correlation and the other a combination of third-order one- and two-point cumulants. These methods use the fact that, for Gaussian initial conditions and scales larger than 2020 h−1h^{-1}Mpc, the reduced third-order matter correlations are independent of redshift (and therefore of the growth factor) while the third-order galaxy correlations depend on bb. We use matter and halo catalogs from the MICE-GC simulation to test how well we can recover b(z)b(z) and therefore D(z)D(z) with these methods in 3D real space. We also present a new approach, which enables us to measure DD directly from the redshift evolution of second- and third-order galaxy correlations without the need of modelling matter correlations. For haloes with masses lower than 101410^{14} h−1h^{-1}M⊙_\odot, we find 1010% deviations between the different estimates of DD, which are comparable to current observational errors. At higher masses we find larger differences that can probably be attributed to the breakdown of the bias model and non-Poissonian shot noise.Comment: 24 pages, 20 figures, 2 tables, accepted for publication in MNRA

    The Complete Calibration of the Color-Redshift Relation (C3R2) Survey: Survey Overview and Data Release 1

    Get PDF
    A key goal of the Stage IV dark energy experiments Euclid, LSST and WFIRST is to measure the growth of structure with cosmic time from weak lensing analysis over large regions of the sky. Weak lensing cosmology will be challenging: in addition to highly accurate galaxy shape measurements, statistically robust and accurate photometric redshift (photo-z) estimates for billions of faint galaxies will be needed in order to reconstruct the three-dimensional matter distribution. Here we present an overview of and initial results from the Complete Calibration of the Color-Redshift Relation (C3R2) survey, designed specifically to calibrate the empirical galaxy color-redshift relation to the Euclid depth. These redshifts will also be important for the calibrations of LSST and WFIRST. The C3R2 survey is obtaining multiplexed observations with Keck (DEIMOS, LRIS, and MOSFIRE), the Gran Telescopio Canarias (GTC; OSIRIS), and the Very Large Telescope (VLT; FORS2 and KMOS) of a targeted sample of galaxies most important for the redshift calibration. We focus spectroscopic efforts on under-sampled regions of galaxy color space identified in previous work in order to minimize the number of spectroscopic redshifts needed to map the color-redshift relation to the required accuracy. Here we present the C3R2 survey strategy and initial results, including the 1283 high confidence redshifts obtained in the 2016A semester and released as Data Release 1.Comment: Accepted to ApJ. 11 pages, 5 figures. Redshifts can be found at http://c3r2.ipac.caltech.edu/c3r2_DR1_mrt.tx

    The Evolution of Luminous Compact Blue Galaxies: Disks or Spheroids?

    Get PDF
    Luminous compact blue galaxies (LCBGs) are a diverse class of galaxies characterized by high luminosity, blue color, and high surface brightness that sit at the critical juncture of galaxies evolving from the blue to the red sequence. As part of our multi-wavelength survey of local LCBGs, we have been studying the HI content of these galaxies using both single-dish telescopes and interferometers. Our goals are to determine if single-dish HI observations represent a true measure of the dynamical mass of LCBGs and to look for signatures of recent interactions that may be triggering star formation in LCBGs. Our data show that while some LCBGs are undergoing interactions, many appear isolated. While all LCBGs contain HI and show signatures of rotation, the population does not lie on the Tully-Fisher relation nor can it evolve onto it. Furthermore, the HI maps of many LCBGs show signatures of dynamically hot components, suggesting that we are seeing the formation of a thick disk or spheroid in at least some LCBGs. There is good agreement between the HI and H-alpha kinematics for LCBGs, and both are similar in appearance to the H-alpha kinematics of high redshift star-forming galaxies. Our combined data suggest that star formation in LCBGs is primarily quenched by virial heating, consistent with model predictions.Comment: 4 pages, 2 figures, to appear in the proceedings of IAU Symposium 277, "Tracing the Ancestry of Galaxies on the Land of our Ancestors", eds. C. Carignan, K.C. Freeman, and F. Combe
    • 

    corecore