360 research outputs found

    Control via electron count of the competition between magnetism and superconductivity in cobalt and nickel doped NaFeAs

    Full text link
    Using a combination of neutron, muon and synchrotron techniques we show how the magnetic state in NaFeAs can be tuned into superconductivity by replacing Fe by either Co or Ni. Electron count is the dominant factor, since Ni-doping has double the effect of Co-doping for the same doping level. We follow the structural, magnetic and superconducting properties as a function of doping to show how the superconducting state evolves, concluding that the addition of 0.1 electrons per Fe atom is sufficient to traverse the superconducting domain, and that magnetic order coexists with superconductivity at doping levels less than 0.025 electrons per Fe atom.Comment: 4 pages, 6 figure

    Neutron studies of a high spin Fe19_{19} molecular nanodisc

    Get PDF
    The molecular cluster system [Fe19_{19}(metheidi)10_{10}(OH)14_{14}O6_{6}(H2_{2}O)12_{12}]NO3_{3}·24H2_{2}O, abbreviated as Fe19_{19}, contains nineteen Fe(III) ions arranged in a disc-like structure with the total spin S = 35/2. For the first order, it behaves magnetically as a single molecule magnet with a 16 K anisotropy barrier. The high spin value enhances weak intermolecular interactions for both dipolar and superexchange mechanisms and an eventual transition to antiferromagnetic order occurs at 1.2 K. We used neutron diffraction to determine both the mode of ordering and the easy spin axis. The observed ordering was not consistent with a purely dipolar driven order, indicating a significant contribution from intermolecular superexchange. The easy axis is close to the molecular Fe1–Fe10 axis. Inelastic neutron scattering was used to follow the magnetic order parameter and to measure the magnetic excitations. Direct transitions to at least three excited states were found in the 2 to 3 meV region. Measurements below 0.2 meV revealed two low energy excited states, which were assigned to S = 39/2 and S = 31/2 spin states with respective excitation gaps of 1.5 and 3 K. Exchange interactions operating over distances of order 10 Å were determined to be on the order of 5 mK and were eight-times stronger than the dipolar coupling

    Nanoscale depth-resolved polymer dynamics probed by the implantation of low energy muons

    Get PDF
    The low energy muon (LEM) technique has been used to probe local changes in the dynamical spectrum of thin film polymer samples taking place as a function of the temperature and the implantation depth below the free surface. The studies have been made on samples of polydimethylsiloxane (PDMS) and polybutadiene (PB) using the transverse magnetic field (TF) configuration and diamagnetic probe muons. In PDMS evidence is found for suppression of the glass transition temperature near the surface, along with significantly modified dynamics in the near-surface region as well as at depths significantly below the surface. For PB the LEM technique reveals well-defined layers of dynamical and spatial inhomogeneity at depths of order 0.1–0.2 μm below the free surface. These inhomogeneous regions may be assigned to nanopores produced by solvent streaming during preparation of spin-cast films. A thermal annealing procedure is shown to significantly reduce the thickness of these inhomogeneous layers. These results demonstrate that using LEM in the TF configuration provides a promising new method for studying surface-modified local dynamics of polymers that is also able to reveal nanostructured buried layers in polymer films

    μSR study of Al-0.67%Mg-0.77%Si alloys

    Get PDF
    Zero-field muon spin relaxation measurements were carried out with Al-0.67%Mg- 0.77%Si alloys in the temperature range from 20 K to 300 K. Observed relaxation spectra were compared with the relaxation functions calculated by a Monte Carlo simulation with four fitting parameters: the dipolar width, trapping rate, detrapping rate and fraction of initially trapped muons. From the fitting, the temperature variations of the trapping rates reveal that there are three temperature regions concerning muon kinetics. In the low temperature region below 120 K, muons appeared to be trapped in a shallow potential yielded by dissolved Mg atoms, and thus little effect of heat treatment of the samples was observed, while in the mid and hightemperature regions, the trapping rates clearly depended on the heat treatment of the samples suggesting muon-cluster and/or muon-vacancy interactions

    Magnetic phase boundary of BaVS3 clarified with high-pressure mu+SR

    Get PDF
    The magnetic nature of the quasi-one-dimensional BaVS3 has been studied as a function of temperature down to 0.25 K and pressure up to 1.97 GPa on a powder sample using the positive muon spin rotation and relaxation (mu(+) SR) technique. At ambient pressure, BaVS3 enters an incommensurate antiferromagnetic ordered state below the Neel temperature (T-N)31 K. T-N is almost constant as the pressure (p) increases from ambient pressure to 1.4 GPa, then T-N decreases rapidly for p > 1.4 GPa, and finally disappears at p similar to 1.8 GPa, above which a metallic phase is stabilized. Hence, T-N is found to be equivalent to the pressure-induced metal-insulator transition temperature (T-MI) at p > 1.4 GPa
    corecore