138 research outputs found

    Evaluating homophily in networks via HONTO (HOmophily Network TOol): a case study of chromosomal interactions in human PPI networks

    Get PDF
    It has been observed in different kinds of networks, such as social or biological ones, a typical behavior inspired by the general principle 'similarity breeds connections'. These networks are defined as homophilic as nodes belonging to the same class preferentially interact with each other. In this work, we present HONTO (HOmophily Network TOol), a user-friendly open-source Python3 package designed to evaluate and analyze homophily in complex networks. The tool takes in input from the network along with a partition of its nodes into classes and yields a matrix whose entries are the homophily/heterophily z-score values. To complement the analysis, the tool also provides z-score values of nodes that do not interact with any other node of the same class. Homophily/heterophily z-scores values are presented as a heatmap allowing a visual at-a-glance interpretation of results. AVAILABILITY AND IMPLEMENTATION: Tool's source code is available at https://github.com/cumbof/honto under the MIT license, installable as a package from PyPI (pip install honto) and conda-forge (conda install -c conda-forge honto), and has a wrapper for the Galaxy platform available on the official Galaxy ToolShed (Blankenberg et al., 2014) at https://toolshed.g2.bx.psu.edu/view/fabio/honto

    Identification of Novel Linear Megaplasmids Carrying a ß-Lactamase Gene in Neurotoxigenic Clostridium butyricum Type E Strains

    Get PDF
    Since the first isolation of type E botulinum toxin-producing Clostridium butyricum from two infant botulism cases in Italy in 1984, this peculiar microorganism has been implicated in different forms of botulism worldwide. By applying particular pulsed-field gel electrophoresis run conditions, we were able to show for the first time that ten neurotoxigenic C. butyricum type E strains originated from Italy and China have linear megaplasmids in their genomes. At least four different megaplasmid sizes were identified among the ten neurotoxigenic C. butyricum type E strains. Each isolate displayed a single sized megaplasmid that was shown to possess a linear structure by ATP-dependent exonuclease digestion. Some of the neurotoxigenic C. butyricum type E strains possessed additional smaller circular plasmids. In order to investigate the genetic content of the newly identified megaplasmids, selected gene probes were designed and used in Southern hybridization experiments. Our results revealed that the type E botulinum neurotoxin gene was chromosome-located in all neurotoxigenic C. butyricum type E strains. Similar results were obtained with the 16S rRNA, the tetracycline tet(P) and the lincomycin resistance protein lmrB gene probes. A specific mobA gene probe only hybridized to the smaller plasmids of the Italian C. butyricum type E strains. Of note, a ß-lactamase gene probe hybridized to the megaplasmids of eight neurotoxigenic C. butyricum type E strains, of which seven from clinical sources and the remaining one from a food implicated in foodborne botulism, whereas this ß-lactam antibiotic resistance gene was absent form the megaplasmids of the two soil strains examined. The widespread occurrence among C. butyricum type E strains associated to human disease of linear megaplasmids harboring an antibiotic resistance gene strongly suggests that the megaplasmids could have played an important role in the emergence of C. butyricum type E as a human pathogen

    High Density Microarray Analysis Reveals New Insights into Genetic Footprints of Listeria monocytogenes Strains Involved in Listeriosis Outbreaks

    Get PDF
    Listeria monocytogenes, a foodborne bacterial pathogen, causes invasive and febrile gastroenteritis forms of listeriosis in humans. Both invasive and febrile gastroenteritis listeriosis is caused mostly by serotypes 1/2a, 1/2b and 4b strains. The outbreak strains of serotype 1/2a and 4b could be further classified into several epidemic clones but the genetic bases for the diverse pathophysiology have been unsuccessful. DNA microarray provides an important tool to scan the entire genome for genetic signatures that may distinguish the L. monocytogenes strains belonging to different outbreaks. We have designed a pan-genomic microarray chip (Listeria GeneChip) containing sequences from 24 L. monocytogenes strains. The chip was designed to identify the presence/absence of genomic sequences, analyze transcription profiles and identify SNPs. Analysis of the genomic profiles of 38 outbreak strains representing 1/2a, 1/2b and 4b serotypes, revealed that the strains formed distinct genetic clusters adhering to their serotypes and epidemic clone types. Although serologically 1/2a and 1/b strains share common antigenic markers microarray analysis revealed that 1/2a strains are further apart from the closely related 1/2b and 4b strains. Within any given serotype and epidemic clone type the febrile gastroenteritis and invasive strains can be further distinguished based on several genetic markers including large numbers of phage genome, and intergenic sequences. Our results showed that the microarray-based data can be an important tool in characterization of L. monocytogenes strains involved in both invasive and gastroenteritis outbreaks. The results for the first time showed that the serotypes and epidemic clones are based on extensive pan-genomic variability and the 1/2b and 4bstrains are more closely related to each other than the 1/2a strains. The data also supported the hypothesis that the strains causing these two diverse outbreaks are genotypically different and this finding might be important in understanding the pathophysiology of this organism

    Evaluation of Commercial Probiotic Products

    Get PDF
    Although there is a vast number of probiotic products commercially available due to their acceptability and increasing usage, their quality control has continuously been a major concern. This study aimed to assess some commercially available probiotics on the UK market for content in relation to their label claim. Seven products were used for the study. The bacteria content were isolated, identified and enumerated on selective media. The results revealed that all products evaluated contained viable probiotic bacteria but only three out of the seven products (43%) contained the claimed culture concentration or more. None of the multispecies product contained all the labelled probiotic bacteria. Misidentification of some species occurred. The results concurred with previous studies and showed that quality issues with commercial probiotics remain. Since probiotic activity is linked with probiotic concentration and is strain specific, the need exist for a global comprehensive legislation to control the quality of probiotics whose market is gaining huge momentum

    Involvement of Skeletal Muscle Gene Regulatory Network in Susceptibility to Wound Infection Following Trauma

    Get PDF
    Despite recent advances in our understanding the pathophysiology of trauma, the basis of the predisposition of trauma patients to infection remains unclear. A Drosophila melanogaster/Pseudomonas aeruginosa injury and infection model was used to identify host genetic components that contribute to the hyper-susceptibility to infection that follows severe trauma. We show that P. aeruginosa compromises skeletal muscle gene (SMG) expression at the injury site to promote infection. We demonstrate that activation of SMG structural components is under the control of cJun-N-terminal Kinase (JNK) Kinase, Hemipterous (Hep), and activation of this pathway promotes local resistance to P. aeruginosa in flies and mice. Our study links SMG expression and function to increased susceptibility to infection, and suggests that P. aeruginosa affects SMG homeostasis locally by restricting SMG expression in injured skeletal muscle tissue. Local potentiation of these host responses, and/or inhibition of their suppression by virulent P. aeruginosa cells, could lead to novel therapies that prevent or treat deleterious and potentially fatal infections in severely injured individuals

    Animal Botulism Outcomes in the AniBioThreat Project

    Get PDF
    Botulism disease in both humans and animals is a worldwide concern. Botulinum neurotoxins produced by Clostridium botulinum and other Clostridium species are the most potent biological substances known and are responsible for flaccid paralysis leading to a high mortality rate. Clostridium botulinum and botulinum neurotoxins are considered potential weapons for bioterrorism and have been included in the Australia Group List of Biological Agents. In 2010 the European Commission (DG Justice, Freedom and Security) funded a 3-year project named AniBioThreat to improve the EU's capacity to counter animal bioterrorism threats. A detection portfolio with screening methods for botulism agents and incidents was needed to improve tracking and tracing of accidental and deliberate contamination of the feed and food chain with botulinum neurotoxins and other Clostridia. The complexity of this threat required acquiring new genetic information to better understand the diversity of these Clostridia and develop detection methods targeting both highly specific genetic markers of these Clostridia and the neurotoxins they are able to produce. Several European institutes participating in the AniBioThreat project collaborated on this program to achieve these objectives. Their scientific developments are discussed here

    Analysis of the Neurotoxin Complex Genes in Clostridium botulinum A1-A4 and B1 Strains: BoNT/A3, /Ba4 and /B1 Clusters Are Located within Plasmids

    Get PDF
    BACKGROUND: Clostridium botulinum and related clostridial species express extremely potent neurotoxins known as botulinum neurotoxins (BoNTs) that cause long-lasting, potentially fatal intoxications in humans and other mammals. The amino acid variation within the BoNT is used to categorize the species into seven immunologically distinct BoNT serotypes (A-G) which are further divided into subtypes. The BoNTs are located within two generally conserved gene arrangements known as botulinum progenitor complexes which encode toxin-associated proteins involved in toxin stability and expression. METHODOLOGY/PRINCIPAL FINDINGS: Because serotype A and B strains are responsible for the vast majority of human botulism cases worldwide, the location, arrangement and sequences of genes from eight different toxin complexes representing four different BoNT/A subtypes (BoNT/A1-Ba4) and one BoNT/B1 strain were examined. The bivalent Ba4 strain contained both the BoNT/A4 and BoNT/bvB toxin clusters. The arrangements of the BoNT/A3 and BoNT/A4 subtypes differed from the BoNT/A1 strains and were similar to those of BoNT/A2. However, unlike the BoNT/A2 subtype, the toxin complex genes of BoNT/A3 and BoNT/A4 were found within large plasmids and not within the chromosome. In the Ba4 strain, both BoNT toxin clusters (A4 and bivalent B) were located within the same 270 kb plasmid, separated by 97 kb. Complete genomic sequencing of the BoNT/B1 strain also revealed that its toxin complex genes were located within a 149 kb plasmid and the BoNT/A3 complex is within a 267 kb plasmid. CONCLUSIONS/SIGNIFICANCE: Despite their size differences and the BoNT genes they contain, the three plasmids containing these toxin cluster genes share significant sequence identity. The presence of partial insertion sequence (IS) elements, evidence of recombination/gene duplication events, and the discovery of the BoNT/A3, BoNT/Ba4 and BoNT/B1 toxin complex genes within plasmids illustrate the different mechanisms by which these genes move among diverse genetic backgrounds of C. botulinum
    corecore