34 research outputs found

    Temperature and injection water source influence microbial community structure in four Alaskan North Slope hydrocarbon reservoirs

    Get PDF
    A fundamental knowledge of microbial community structure in petroleum reservoirs can improve predictive modeling of these environments. We used hydrocarbon profiles, stable isotopes, and high-density DNA microarray analysis to characterize microbial communities in produced water from four Alaskan North Slope hydrocarbon reservoirs. Produced fluids from Schrader Bluff (24–27°C), Kuparuk (47–70°C), Sag River (80°C), and Ivishak (80–83°C) reservoirs were collected, with paired soured/non-soured wells sampled from Kuparuk and Ivishak. Chemical and stable isotope data suggested Schrader Bluff had substantial biogenic methane, whereas methane was mostly thermogenic in deeper reservoirs. Acetoclastic methanogens (Methanosaeta) were most prominent in Schrader Bluff samples, and the combined δD and δ13C values of methane also indicated acetoclastic methanogenesis could be a primary route for biogenic methane. Conversely, hydrogenotrophic methanogens (e.g., Methanobacteriaceae) and sulfide-producing Archaeoglobus and Thermococcus were more prominent in Kuparuk samples. Sulfide-producing microbes were detected in all reservoirs, uncoupled from souring status (e.g., the non-soured Kuparuk samples had higher relative abundances of many sulfate-reducers compared to the soured sample, suggesting sulfate-reducers may be living fermentatively/syntrophically when sulfate is limited). Sulfate abundance via long-term seawater injection resulted in greater relative abundances of Desulfonauticus, Desulfomicrobium, and Desulfuromonas in the soured Ivishak well compared to the non-soured well. In the non-soured Ivishak sample, several taxa affiliated with Thermoanaerobacter and Halomonas predominated. Archaea were not detected in the deepest reservoirs. Functional group taxa differed in relative abundance among reservoirs, likely reflecting differing thermal and/or geochemical influences

    Diagnostic work-up and loss of tuberculosis suspects in Jogjakarta, Indonesia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early and accurate diagnosis of pulmonary tuberculosis (TB) is critical for successful TB control. To assist in the diagnosis of smear-negative pulmonary TB, the World Health Organisation (WHO) recommends the use of a diagnostic algorithm. Our study evaluated the implementation of the national tuberculosis programme's diagnostic algorithm in routine health care settings in Jogjakarta, Indonesia. The diagnostic algorithm is based on the WHO TB diagnostic algorithm, which had already been implemented in the health facilities.</p> <p>Methods</p> <p>We prospectively documented the diagnostic work-up of all new tuberculosis suspects until a diagnosis was reached. We used clinical audit forms to record each step chronologically. Data on the patient's gender, age, symptoms, examinations (types, dates, and results), and final diagnosis were collected.</p> <p>Results</p> <p>Information was recorded for 754 TB suspects; 43.5% of whom were lost during the diagnostic work-up in health centres, 0% in lung clinics. Among the TB suspects who completed diagnostic work-ups, 51.1% and 100.0% were diagnosed without following the national TB diagnostic algorithm in health centres and lung clinics, respectively. However, the work-up in the health centres and lung clinics generally conformed to international standards for tuberculosis care (ISTC). Diagnostic delays were significantly longer in health centres compared to lung clinics.</p> <p>Conclusions</p> <p>The high rate of patients lost in health centres needs to be addressed through the implementation of TB suspect tracing and better programme supervision. The national TB algorithm needs to be revised and differentiated according to the level of care.</p

    Bacterial community structure transformed after thermophilically composting human waste in Haiti

    No full text
    <div><p>Recycling human waste for beneficial use has been practiced for millennia. Aerobic (thermophilic) composting of sewage sludge has been shown to reduce populations of opportunistically pathogenic bacteria and to inactivate both <i>Ascaris</i> eggs and culturable <i>Escherichia coli</i> in raw waste, but there is still a question about the fate of most fecal bacteria when raw material is composted directly. This study undertook a comprehensive microbial community analysis of composting material at various stages collected over 6 months at two composting facilities in Haiti. The fecal microbiota signal was monitored using a high-density DNA microarray (PhyloChip). Thermophilic composting altered the bacterial community structure of the starting material. Typical fecal bacteria classified in the following groups were present in at least half the starting material samples, yet were reduced below detection in finished compost: <i>Prevotella</i> and Erysipelotrichaceae (100% reduction of initial presence), Ruminococcaceae (98–99%), Lachnospiraceae (83–94%, primarily unclassified taxa remained), <i>Escherichia</i> and <i>Shigella</i> (100%). Opportunistic pathogens were reduced below the level of detection in the final product with the exception of <i>Clostridium tetani</i>, which could have survived in a spore state or been reintroduced late in the outdoor maturation process. Conversely, thermotolerant or thermophilic Actinomycetes and Firmicutes (e.g., <i>Thermobifida</i>, <i>Bacillus</i>, <i>Geobacillus</i>) typically found in compost increased substantially during the thermophilic stage. This community DNA-based assessment of the fate of human fecal microbiota during thermophilic composting will help optimize this process as a sanitation solution in areas where infrastructure and resources are limited.</p></div

    Non-metric multidimensional scaling (NMDS) plots of Bray-Curtis similarity matrices based on standardized OTU intensities.

    No full text
    <p>Number of samples at each stage at each location were: Bucket (12), Thermophilic compost (9), Curing (3), Bagged (3). a) Cap-Haitien, b) Port-au-Prince</p

    OTU relative richness calculated at each stage of a thermophilic composting process at two locations: Cap-Haitien and Port-au-Prince, Haiti.

    No full text
    <p>a) average number of OTU per composting process stage, error bars indicate standard deviation; b) distribution of OTU within phyla containing at least five OTU (main dataset of 7531 OTU); c) distribution of OTU within phyla comprising the 1768 OTU defined as human gut associated for this dataset (present in at least half the Bucket samples). Number of samples included per location: Bucket (n = 12), Thermophilic (n = 9 in Cap-Haitian, n = 7 in Port-au-Prince), Curing (n = 3), and Bagged (n = 3).</p
    corecore