3,510 research outputs found

    Harnack inequality for fractional sub-Laplacians in Carnot groups

    Full text link
    In this paper we prove an invariant Harnack inequality on Carnot-Carath\'eodory balls for fractional powers of sub-Laplacians in Carnot groups. The proof relies on an "abstract" formulation of a technique recently introduced by Caffarelli and Silvestre. In addition, we write explicitly the Poisson kernel for a class of degenerate subelliptic equations in product-type Carnot groups

    Approximations of Sobolev norms in Carnot groups

    Full text link
    This paper deals with a notion of Sobolev space W1,pW^{1,p} introduced by J.Bourgain, H.Brezis and P.Mironescu by means of a seminorm involving local averages of finite differences. This seminorm was subsequently used by A.Ponce to obtain a Poincar\'e-type inequality. The main results that we present are a generalization of these two works to a non-Euclidean setting, namely that of Carnot groups. We show that the seminorm expressd in terms of the intrinsic distance is equivalent to the LpL^p norm of the intrinsic gradient, and provide a Poincar\'e-type inequality on Carnot groups by means of a constructive approach which relies on one-dimensional estimates. Self-improving properties are also studied for some cases of interest

    Harnack inequality and regularity for degenerate quasilinear elliptic equations

    Full text link
    We prove Harnack inequality and local regularity results for weak solutions of a quasilinear degenerate equation in divergence form under natural growth conditions. The degeneracy is given by a suitable power of a strong AA_\infty weight. Regularity results are achieved under minimal assumptions on the coefficients and, as an application, we prove C1,αC^{1,\alpha} local estimates for solutions of a degenerate equation in non divergence form

    Basic properties of nonsmooth Hormander's vector fields and Poincare's inequality

    Full text link
    We consider a family of vector fields defined in some bounded domain of R^p, and we assume that they satisfy Hormander's rank condition of some step r, and that their coefficients have r-1 continuous derivatives. We extend to this nonsmooth context some results which are well-known for smooth Hormander's vector fields, namely: some basic properties of the distance induced by the vector fields, the doubling condition, Chow's connectivity theorem, and, under the stronger assumption that the coefficients belong to C^{r-1,1}, Poincare's inequality. By known results, these facts also imply a Sobolev embedding. All these tools allow to draw some consequences about second order differential operators modeled on these nonsmooth Hormander's vector fields.Comment: 60 pages, LaTeX; Section 6 added and Section 7 (6 in the previous version) changed. Some references adde
    corecore