24 research outputs found

    Enzyme discovery and specificity fingerprints by analysis of correlated positions in CAZy family GH65

    Get PDF
    Please click Additional Files below to see the full abstrac

    β-Glucan phosphorylases in carbohydrate synthesis

    Get PDF
    beta-Glucan phosphorylases are carbohydrate-active enzymes that catalyze the reversible degradation of beta-linked glucose polymers, with outstanding potential for the biocatalytic bottom-up synthesis of beta-glucans as major bioactive compounds. Their preference for sugar phosphates (rather than nucleotide sugars) as donor substrates further underlines their significance for the carbohydrate industry. Presently, they are classified in the glycoside hydrolase families 94, 149, and 161 (www.cazy.org). Since the discovery of beta-1,3-oligoglucan phosphorylase in 1963, several other specificities have been reported that differ in linkage type and/or degree of polymerization. Here, we present an overview of the progress that has been made in our understanding of beta-glucan and associated beta-glucobiose phosphorylases, with a special focus on their application in the synthesis of carbohydrates and related molecules

    Synthesis, trehalase hydrolytic resistance and inhibition properties of 4-and 6-substituted trehalose derivatives

    Get PDF
    Although trehalose has recently gained interest because of its pharmaceutical potential, its clinical use is hampered due to its low bioavailability. Hence, hydrolysis-resistant trehalose analogues retaining biological activity could be of interest. In this study, 34 4- and 6-O-substituted trehalose derivatives were synthesised using an ether- or carbamate-type linkage. Their hydrolysis susceptibility and inhibitory properties were determined against two trehalases, i.e. porcine kidney and Mycobacterium smegmatis. With the exception of three weakly hydrolysable 6-O-alkyl derivatives, the compounds generally showed to be completely resistant. Moreover, a number of derivatives was shown to be an inhibitor of one or both of these trehalases. For the strongest inhibitors of porcine kidney trehalase IC50 values of around 10 mM could be determined, whereas several compounds displayed sub-mM IC50 against M. smegmatis trehalase. Dockings studies were performed to explain the observed influence of the substitution pattern on the inhibitory activity towards porcine kidney trehalase

    Chemoenzymatic approach toward the synthesis of 3-O-(α/β)-glucosylated 3-hydroxy-β-lactams

    Get PDF
    Glycosylation significantly alters the biological and physicochemical properties of small molecules. beta-Lactam alcohols comprise eligible substrates for such a transformation based on their distinct relevance in the chemical and medicinal community. In this framework, the unprecedented enzymatic glycosylation of the rigid and highly strained four-membered beta-lactam azaheterocycle was studied. For this purpose, cis-3-hydroxy-beta-lactams were efficiently prepared in three steps by means of a classical organic synthesis approach, while a biocatalytic step was implemented for the selective formation of the corresponding 3-O-alpha- and -beta-glucosides, hence overcoming the complexities typically encountered in synthetic glycochemistry and contributing to the increasing demand for sustainable processes in the framework of green chemistry. Two carbohydrate-active enzymes were selected based on their broad acceptor specificity and subsequently applied for the alpha- or beta-selective formation of beta-lactam-sugar adducts, using sucrose as a glucosyl donor

    Rational design of an improved transglucosylase for production of the rare sugar nigerose

    Get PDF
    The sucrose phosphorylase from Bifidobacterium adolescentis (BaSP) can be used as a transglucosylase for the production of rare sugars. We designed variants of BaSP for the efficient synthesis of nigerose from sucrose and glucose, thereby adding to the inventory of rare sugars that can conveniently be produced from bulk sugars

    Exploring and engineering the functional diversity of glycoside phosphorylases

    No full text

    Insertions and deletions in protein evolution and engineering

    No full text
    Protein evolution or engineering studies are traditionally focused on amino acid substitutions and the way these contribute to fitness. Meanwhile, the insertion and deletion of amino acids is often overlooked, despite being one of the most common sources of genetic variation. Recent methodological advances and successful engineering stories have demonstrated that the time is ripe for greater emphasis on these mutations and their understudied effects. This review highlights the evolutionary importance and biotechnological relevance of insertions and deletions (indels). We provide a comprehensive overview of approaches that can be employed to include indels in random, (semi)-rational or computational protein engineering pipelines. Furthermore, we discuss the tolerance to indels at the structural level, address how domain indels can link the function of unrelated proteins, and feature studies that illustrate the surprising and intriguing potential of frameshift mutations

    Correlated positions in protein evolution and engineering

    No full text
    Statistical analysis of a protein multiple sequence alignment can reveal groups of positions that undergo interdependent mutations throughout evolution. At these so-called correlated positions, only certain combinations of amino acids appear to be viable for maintaining proper folding, stability, catalytic activity or specificity. Therefore, it is often speculated that they could be interesting guides for semi-rational protein engineering purposes. Because they are a fingerprint from protein evolution, their analysis may provide valuable insight into a protein's structure or function and furthermore, they may also be suitable target positions for mutagenesis. Unfortunately, little is currently known about the properties of these correlation networks and how they should be used in practice. This review summarises the recent findings, opportunities and pitfalls of the concept
    corecore