156 research outputs found

    Reconfigurable photoinduced metamaterials in the microwave regime

    Full text link
    We investigate optically reconfigurable dielectric metamaterials at gigahertz frequencies. More precisely, we study the microwave response of a subwavelength grating optically imprinted into a semiconductor slab. In the homogenized regime, we analytically evaluate the ordinary and extraordinary component of the effective permittivity tensor by taking into account the photo-carrier dynamics described by the ambipolar diffusion equation. We analyze the impact of semiconductor parameters on the gigahertz metamaterial response which turns out to be highly reconfigurable by varying the photogenerated grating and which can show a marked anisotropic behavior.Comment: 6 figures, 7 page

    Nanoemulsions as vehicles for topical administration of glycyrrhetic acid: characterization and in vitro and in vivo evaluation.

    Get PDF
    Nano-emulsions are innovative colloidal systems characterized by high kinetic stability, low viscosity, and optical transparency, which make them very attractive in many dermatological applications. Furthermore their small size seems to favor the topical administration of actives which scarcely cross the skin. In the light of these interesting features, the present study was aimed to the evaluation, in vitro and in vivo, of glycyrrhetic acid (GA) release through the skin from the nanoemulsion system. GA-loaded nanoemulsion (GA(N)) was prepared by phase inversion temperature (PIT) method, and was characterized in order to determine mean droplet size and its stability during a well-defined storage period. Further Cryo-TEM studies were performed to obtain information regarding nanoemulsion structure. The GA release pattern from nanoemulsion was evaluated in vitro, to determine its percutaneous absorption through excised human skin (stratum corneum and epidermis, SCE), and in vivo evaluating GA topical anti-inflammatory activity on healthy human volunteers by the UVB-induced erythema model. Nanoemulsions prepared by PIT method showed a mean droplet diameter of 210 nm that drastically changed during a storage of 5 weeks at room temperature. In vitro and in vivo evidence showed that the nanoemulsion system significantly increased the transdermal permeability of GA in comparison to a control O/W emulsion (GA(O/W)) containing the same amount of active compound

    GPER agonist G-1 decreases adrenocortical carcinoma (ACC) cell growth in vitro and in vivo

    Get PDF
    We have previously demonstrated that estrogen receptor (ER) alpha (ESR1) increases proliferation of adrenocortical carcinoma (ACC) through both an estrogen-dependent and -independent (induced by IGF-II/IGF1R pathways) manner. Then, the use of tamoxifen, a selective estrogen receptor modulator (SERM), appears effective in reducing ACC growth in vitro and in vivo. However, tamoxifen not only exerts antiestrogenic activity, but also acts as full agonist on the G protein-coupled estrogen receptor (GPER). Aim of this study was to investigate the effect of a non-steroidal GPER agonist G-1 in modulating ACC cell growth. We found that G-1 is able to exert a growth inhibitory effect on H295R cells both in vitro and, as xenograft model, in vivo. Treatment of H295R cells with G-1 induced cell cycle arrest, DNA damage and cell death by the activation of the intrinsic apoptotic mechanism. These events required sustained extracellular regulated kinase (ERK) 1/2 activation. Silencing of GPER by a specific shRNA partially reversed G-1-mediated cell growth inhibition without affecting ERK activation. These data suggest the existence of G-1 activated but GPER-independent effects that remain to be clarified. In conclusion, this study provides a rational to further study G-1 mechanism of action in order to include this drug as a treatment option to the limited therapy of ACC

    A novel mutation in NDUFB11 unveils a new clinical phenotype associated with lactic acidosis and sideroblastic anemia

    Get PDF
    NDUFB11, a component of mitochondrial complex I, is a relatively small integral membrane protein, belonging to the 'supernumerary' group of subunits, but proved to be absolutely essential for the assembly of an active complex I. Mutations in in the X-linked nuclear encoded NDUFB11 gene have recently been discovered in association with two distinct phenotypes, i.e. microphthalmia with linear skin defects and histiocytoid cardiomyopathy. We report on a male with complex I deficiency, caused by a de novo mutation in NDUFB11 and displaying early onset sideroblastic anemia as the unique feature. This is the third report that describes a mutation in NDUFB11 but all are associated to a different phenotype. Our results further expand the molecular spectrum and associated clinical phenotype of NDUFB11 defects

    Outcome of liver transplantation with grafts from brain-dead donors treated with dual hypothermic oxygenated machine perfusion, with particular reference to elderly donors

    Get PDF
    Prompted by the utilization of extended criteria donors, dual hypothermic oxygenated machine perfusion (D‐HOPE) was introduced in liver transplantation to improve preservation. When donors after neurological determination of death (DBD) are used, D‐HOPE effect on graft outcomes is unclear. To assess D‐HOPE value in this setting and to identify ideal scenarios for its use, data on primary adult liver transplant recipients from January 2014 to April 2021 were analyzed using inverse probability of treatment weighting, comparing outcomes of D‐HOPE‐treated grafts (n = 121) with those preserved by static cold storage (n = 723). End‐ischemic D‐HOPE was systematically applied since November 2017 based on donor and recipient characteristics and transplant logistics. D‐HOPE use was associated with a significant reduction of early allograft failure (OR: 0.24; 0.83; p = .024), grade ≄3 complications (OR: 0.57; p = .046), comprehensive complication index (−7.20 points; p = .003), and improved patient and graft survival. These results were confirmed in the subset of elderly donors (>75‐year‐old). Although D‐HOPE did not reduce the incidence of biliary complications, its use was associated with a reduced severity of ischemic cholangiopathy. In conclusion, D‐HOPE improves postoperative outcomes and reduces early allograft loss in extended criteria DBD grafts

    Redox activation of ATM enhances GSNOR translation to sustain mitophagy and tolerance to oxidative stress

    Get PDF
    The denitrosylase S-nitrosoglutathione reductase (GSNOR) has been suggested to sustain mitochondrial removal by autophagy (mitophagy), functionally linking S-nitrosylation to cell senescence and aging. In this study, we provide evidence that GSNOR is induced at the translational level in response to hydrogen peroxide and mitochondrial ROS. The use of selective pharmacological inhibitors and siRNA demonstrates that GSNOR induction is an event downstream of the redox-mediated activation of ATM, which in turn phosphorylates and activates CHK2 and p53 as intermediate players of this signaling cascade. The modulation of ATM/GSNOR axis, or the expression of a redox-insensitive ATM mutant influences cell sensitivity to nitrosative and oxidative stress, impairs mitophagy and affects cell survival. Remarkably, this interplay modulates T-cell activation, supporting the conclusion that GSNOR is a key molecular effector of the antioxidant function of ATM and providing new clues to comprehend the pleiotropic effects of ATM in the context of immune function
    • 

    corecore