27 research outputs found

    MuRF-1 and p-GSK3β expression in muscle atrophy of liver cirrhosis

    Get PDF
    Background: Chronic diseases, including cirrhosis, are often accompanied by protein-energy malnutrition and muscle loss, which in turn negatively affect quality of life, morbidity and mortality. Unlike other chronic conditions, few data are available on the molecular mechanisms underlying muscle wasting in this clinical setting. Aims: To assess mechanisms of muscle atrophy in patients with cirrhosis. Methods: Nutritional [subjective global assessment (SGA) and anthropometry] and metabolic assessment was performed in 30 cirrhotic patients awaiting liver transplantation. Rectus abdominis biopsies were obtained intraoperatively in 22 cirrhotic patients and in 10 well-nourished subjects undergoing elective surgery for non-neoplastic disease, as a control group. Total RNA was extracted and mRNA for atrogenes (MuRF-1, Atrogin-1/MAFbx), myostatin (MSTN), GSK3β and IGF-1 was assayed. Results: A total of 50% of cirrhotic patients were malnourished based on SGA, while 53% were muscle-depleted according to mid-arm muscle area (MAMA<5th percentile). MuRF-1 RNA expression was significantly increased in malnourished cirrhotic patients (SGA-B/C) vs. well-nourished patients (SGA-A) (P = 0.01). The phosphorylation of GSK3β was up-regulated in cirrhotic patients with hepatocellular carcinoma (HCC) vs. patients without tumour (P < 0.05). Conclusions: Muscle loss is frequently found in end-stage liver disease patients. Molecular factors pertaining to signalling pathways known to be involved in the regulation of muscle mass are altered during cirrhosis and HCC. © 2013 John Wiley & Sons A/S

    Muscle protein waste in tumor-bearing rats is effectively antagonized by a beta 2-adrenergic agonist (clenbuterol). Role of the ATP-ubiquitin-dependent proteolytic pathway.

    Full text link
    Tissue protein hypercatabolism (TPH) is a most important feature in cancer cachexia, particularly with regard to the skeletal muscle. The rat ascites hepatoma Yoshida AH-130 is a very suitable model system for studying the mechanisms involved in the processes that lead to tissue depletion, since it induces in the host a rapid and progressive muscle waste mainly due to TPH (Tessitore, L., G. Bonelli, and F. M. Baccino. 1987. Biochem. J. 241:153-159). Detectable plasma levels of tumor necrosis factor-alpha associated with marked perturbations in the hormonal homeostasis have been shown to concur in forcing metabolism into a catabolic setting (Tessitore, L., P. Costelli, and F. M. Baccino. 1993. Br. J. Cancer. 67:15-23). The present study was directed to investigate if beta 2-adrenergic agonists, which are known to favor skeletal muscle hypertrophy, could effectively antagonize the enhanced muscle protein breakdown in this cancer cachexia model. One such agent, i.e., clenbuterol, indeed largely prevented skeletal muscle waste in AH-130-bearing rats by restoring protein degradative rates close to control values. This normalization of protein breakdown rates was achieved through a decrease of the hyperactivation of the ATP-ubiquitin-dependent proteolytic pathway, as previously demonstrated in our laboratory (Llovera, M., C. García-Martínez, N. Agell, M. Marzábal, F. J. López-Soriano, and J. M. Argilés. 1994. FEBS (Fed. Eur. Biochem. Soc.) Lett. 338:311-318). By contrast, the drug did not exert any measurable effect on various parenchymal organs, nor did it modify the plasma level of corticosterone and insulin, which were increased and decreased, respectively, in the tumor hosts. The present data give new insights into the mechanisms by which clenbuterol exerts its preventive effect on muscle protein waste and seem to warrant the implementation of experimental protocols involving the use of clenbuterol or alike drugs in the treatment of pathological states involving TPH, particularly in skeletal muscle and heart, such as in the present model of cancer cachexia

    High levels of proteolytic enzymes in the ascitic fluid and plasma of rats bearing the Yoshida AH-130 hepatoma

    No full text

    Transformation by oncogenic ras-p21 alters the processing and subcellular localization of the lysosomal protease cathepsin D.

    No full text

    Interference with Ca2+-Dependent Proteolysis Does Not Alter the Course of Muscle Wasting in Experimental Cancer Cachexia.

    Get PDF
    Protein hypercatabolism significantly contributes to the onset and progression of muscle wasting in cancer cachexia. In this regard, a major role is played by the ATP-ubiquitin-proteasome-dependent pathway and by autophagy. However, little is known about the relevance of the Ca2+-dependent proteolytic system. Since previous results suggested that this pathway is activated in the skeletal muscle of tumor hosts, the present study was aimed to investigate whether inhibition of Ca2+-dependent proteases (calpains) may improve cancer-induced muscle wasting. Two experimental models of cancer cachexia were used, namely the AH-130 Yoshida hepatoma and the C26 colon carcinoma. The Ca2+-dependent proteolytic system was inhibited by treating the animals with dantrolene or by overexpressing in the muscle calpastatin, the physiologic inhibitor of Ca2+-dependent proteases. The results confirm that calpain-1 is overexpressed and calpastatin is reduced in the muscle of rats implanted with the AH-130 hepatoma, and show for the first time that the Ca2+-dependent proteolytic system is overactivated also in the C26-bearing mice. Yet, administration of dantrolene, an inhibitor of the Ca2+-dependent proteases, did not modify tumor-induced body weight loss and muscle wasting in the AH-130 hosts. Dantrolene was also unable to reduce the enhancement of protein degradation rates occurring in rats bearing the AH-130 hepatoma. Similarly, overexpression of calpastatin in the tibialis muscle of the C26 hosts did not improve muscle wasting at all. These observations suggest that inhibiting a single proteolytic system is not a good strategy to contrast cancer-induced muscle wasting. In this regard, a more general and integrated approach aimed at targeting the catabolic stimuli rather than the proteolytic activity of a single pathway would likely be the most appropriate therapeutic intervention
    corecore