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1. Introduction 

The skeletal muscle is a very heterogeneous tissue, that is in charge of a broad range of 
functions such as movement, stability, heat production and cold tolerance. It represents 
approximately 50% of total body protein, and plays a central role in whole body metabolism 
(Bassel-Duby & Olson, 2006). In the last two decades, the skeletal muscle, previously 
considered as a mere protein reservoir, has been shown to release cytokines and other 
humoral factors (Pedersen & Febbraio, 2008). This tissue plays a pivotal role in the overall 
energy balance. Indeed, it regulates lipid flux, takes up and stores most of plasma glucose, 
and modulates insulin sensitivity. In this regard, the skeletal muscle likely plays a crucial 
role in pathological states characterized by peripheral insulin resistance such as obesity, as 
also suggested by recent evidence showing the occurrence of a cross-talk between muscle 
and the adipose tissue (reviewed in Clarke & Henry, 2010). 

The human body comprises about six hundred different muscles, composed of 
multinucleated cells organized to form muscle fibers. The myofiber contains many parallel 
myofibrils, characterized by alternating light (I) and dark (A) bands. The latters are bisected 
by a dark region (H zone), while I bands comprise a dark Z line (Z disk). The interspace 
between two Z disks is termed sarcomere, the functional unit of the myofibril. Myofibril 
number defines the cross-sectional area (CSA) of the myofiber, and determines the force-
generating capacity. Myofibrillar contractile proteins myosin and actin form thick and thin 
filaments, respectively. Muscle myosin consists of two heavy chains (MyHC), endowed with 
ATPase activity, and two pairs of light chains (MyLC). Seven different genes coding for 
embryonic, neonatal and adult MHC isoforms have been described in humans. Myosin is 
organized in units assembled in a mobile side by side complex, where the head of myosin is 
at the distal tip of the filament and the tail at the center, rendering the thick filaments 
bipolar. Myosin heads interact with titin, connecting thick filaments to the Z disk. In the thin 
filaments, globular actin monomers are arranged in a double helical conformation, 
associated with tropomyosin, troponin, and nebulin, that regulate the interactions between 
actin and myosin. Troponin binds to Ca2+ released from intacellular stores, releasing 
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tropomyosin and allowing the interaction between actin and myosin heads. Two actin-
capping proteins, CapZ and tropomodulin, localized at the positive and negative end of the 
filament, respectively, prevent actin depolymerization. Finally, the Z disk is anchored to the 
sarcolemma by the intermediate filament protein desmin (reviewed in Morel & Pinset-
Härström). 

Contractile force is generated when myosin associates with actin and then rotates to pull the 
filaments across each other. Sliding of thick and thin filaments results in sarcomere 
shortening, due to the ATP-dependent cyclic interactions between the so called cross-
bridges (protrusions from the myosin molecule, endowed with ATPase activity), and 
specific binding sites on actin. Contractile force is function of both the isometric length-
tension curve and the speed of contraction, that depends on myosin ATPase activity. Two 
different types of skeletal muscles can be defined: those characterized by oxidative 
metabolism and by a long ATPase cycle time, termed slow-twitch, and those that produce 
energy mainly by glycolysis, with a rapid ATPase cycle, the fast-twich type. Different 
MyHC isoforms characterize the skeletal muscle types: the type I (┚, or ┚-cardiac) isoform is 
predominantly expressed in slow fibers, while types IIa, and IIx (also known as IID) are 
expressed in human fast muscles (reviewed in Oldfor, 2007). Such compartmentalization, 
however, is not absolute, since several muscles in the body have a mixed composition. 

Signals from the motor cortex reach the neuromuscular junction, generating an action 
potential that is transmitted to muscle fibers, leading to contraction. The performance of the 
motor unit (motor nerve and muscle fibers) is characterized by mechanical (speed of 
shortening) and metabolic properties (resistance to fatigue). While the former reflects MyHC 
isoform composition (see above), the latter depends on the maintenance of the energy 
balance. Speed of shortening and resistance to fatigue are strictly correlated. Indeed, slow 
muscles, characterized by small CSA, few muscle fibers per motor unit, long ATPase cycle 
time and high oxidative metabolism, display low speed of shortening, but have the 
possibility to replenish ATP during contraction. As a consequence, they are recruited during 
tasks that require low force or power but highly precise and long lasting movements. By 
contrast, fast muscles, that show  large CSA, rapid ATPase cycle associated with glycolytic 
metabolism, are characterized by higher shortening speed then slow ones, but cannot 
rapidly replace ATP, and are recruited under circumstances when high power output is 
needed for short time intervals. 

The number of muscle fibers in mammals does not change significantly during life, in the 
absence of injury or disease. Adult skeletal muscle, composed by post-mitotic cells, is 
endowed with a marked regenerative potential. Indeed, acute muscle injury is rapidly 
repaired by newly formed myotubes, since myogenic precursors (satellite cells) are 
conserved also in the postnatal period (Schultz & McCormick, 1994). In response to 
regenerative stimuli, satellite cells proliferate to form myoblasts, which divide a limited 
number of times before terminally differentiating and fusing into multinucleated myotubes 
(cf. Morgan and Partridge, 2003). Satellite cells are considered an adult stem cell population 
for the skeletal muscle, that can be renewed without losing the ability to generate 
differentiated myotubes. However, also other skeletal muscle progenitors have been 
proposed to contribute to myogenesis. As an example, intramuscular injection of muscle-
resident side-population cells has been shown to contribute to myofiber formation. 
Similarly, CD45/Sca1 positive interstitial muscle-resident cells have been shown to acquire 
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myogenic activity when cocultured with primary myoblasts or in response to muscle injury 
or Wnt signaling. The existence of distinct subsets of myogenic cells likely suggests that 
multiple mechanisms may support regeneration in the adult skeletal muscle, although the 
contribution of these cells to the maintenance or repair of skeletal muscle under physiologic 
conditions is uncertain, and their therapeutic potential has not been clearly established. 

2. Physiological regulation of skeletal muscle mass 

In principle, changes of myofiber number and/or dimension, this latter better defined by 
CSA, result in modulations of the skeletal muscle mass. However, modifications of myofiber 
number are rarely seen, while variations of CSA may occur frequently. In particular, CSA 
increases during normal growth or hypertrophy induced, for example, by exercise, and 
decreases in conditions of inactivity, injury, disease, or aging.  

While muscle hypertrophy reflects an accumulation of contractile proteins, the opposite 
occurs in skeletal muscle atrophy, where both CSA and content of contractile proteins are 
reduced. On this lines, protein content is the main factor regulating skeletal muscle mass. 
The amount of proteins in a cell is strictly regulated by the balance between synthesis and 
degradation rates. In healthy state, protein synthesis and breakdown do not exceed each 
other, allowing normal protein turnover without modifying the skeletal muscle mass. 
Although modulations of both sides of turnover eventually converge to produce a new 
steady-state, physiologic muscle hypertrophy  mainly result from increased rates of protein 
synthesis, which responds earlier than degradation to the inducing stimuli. By contrast, 
increased breakdown rates are in charge of protein depletion in many situations 
characterized by muscle atrophy.  

A complex interplay among humoral mediators such as insulin and IGFs, and amino acids is 
involved in regulating the rates of intracellular protein synthesis. In this regard, signaling 
through the insulin/IGF-1 receptor, as well as increased amino acid levels, have been shown 
to simultaneously stimulate synthesis and inhibit protein catabolism. Protein synthesis 
induction by classical anabolic signals such as insulin or IGF-1 relies on the activation of a 
transduction pathway involving phosphoinositide-3-kinase (PI3K), Akt/PKB, mTOR 
(mammalian Target Of Rapamycin), and p70S6K (p70 ribosomal S6 kinase). As an example, 
this pathway has been shown to account for the generation of muscle hypertrophy induced 
by resistance exercise (reviewed in Adamo & Farrar, 2006). The demonstration that the 
PI3K/Akt/mTOR pathway is crucial to skeletal muscle increase in size has come from 
studies reporting that the expression of a constitutively active form of Akt in skeletal muscle 
cells, or its conditional activation in the skeletal muscle of adult rats, result in the 
appearance of a hypertrophic phenotype (Rommel et al., 2001; Lai et al., 2004). Similar 
patterns can be reproduced by administering a mixture of the 3 branched-chain amino acids 
(BCAAs: leucine, isoleucine, and valine), or even leucine alone. In addition to provide 
substrate for the assembly of new proteins, amino acids interfere with different transduction 
pathways involved in the regulation of mRNA translation (Kadowaki & Kanazawa, 2003). 
In particular, increased leucine intracellular concentrations have been shown to enhance the 
rate of translation by activating p70S6K and eIF-4F (eukaryotic Initiation Factor 4F), 
independently from Akt (Lang and Frost, 2005). The body protein-sparing effect of leucine 
has been suggested by the observation that nitrogen balance in fasting volunteers treated 
with leucine alone or with BCAA keto acid analogues is improved (Choudry et al., 2006). 
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The regulation of protein synthesis exerted by amino acids mainly relies on mTOR, a 
serine/threonine kinase crucially involved in cell growth. mTOR stimulates protein 
synthesis through three key regulatory proteins: p70S6K, 4E-BP1 (eukaryotic initiation factor 
4E-binding protein 1) and eIF-4G (eukaryotic Initiation Factor 4G). Reduced mTOR-
mediated signaling has been reported in the skeletal muscle of fasted rats compared with 
the fed state. As expected, also the levels of phosphorylated 4E-BP1 are decreased in fasted 
animal; this would result in eIF-4E sequestration, inhibiting the assembly of the initiation 
complex eIF-4F. By contrast, 4E-BP1 is markedly hyperphosphorylated in the skeletal 
muscle of rats fed a high protein diet, promoting the formation of the eIF-4F complex. 
Moreover, leucine also promotes phosphorylation of p70S6K (Anthony et al., 2000). Akt 
activation also induces GSK-3┚ phosphorylation, thus resulting in its inactivation. GSK-3 ┚ 
negatively regulates molecules involved in several anabolic processes and most of its effects 

are mediated by the PI3K/Akt pathway, in which GSK-3 acts both as a downstream target 
and as a negative regulator (Hanada et al., 2004). Consistently, non-competitive inhibition of 

GSK-3, by means of transfection with a dominant-negative cDNA, or by pharmacological 
compounds, activates the PI3K/Akt pathway, resulting in myotube hypertrophy (Rommel 
et al., 2001; Van der Velden et al., 2006). In addition, the increased proteolysis observed in 

muscles isolated from burned rats can be prevented by addition of GSK-3 inhibitors to the 
incubation medium (Fang et al., 2005). Other studies have shown that GSK-3 ┚ is involved in 
the pathogenesis of Alzheimer disease, prionic diseases, Hungtington corea, and gp-120 
HIV-related neurotoxicity (Jope, 2003). All these considerations suggest that specific GSK-3 
┚ inhibitors could be useful from a clinical point of view in order to correct muscle 
hypotrophy in wasting diseases such as cancer, HIV, cardiac cachexia, diabetes and to 
interfere with the pathogenic mechanisms of above cited neurologic diseases.  

As for protein breakdown, it is also highly relevant to muscle homeostasis. Indeed, this 

process not only accounts for the degradation of damaged proteins as well as of regulatory 

molecules such as cyclins and their inhibitors, but also plays a crucial role in maintaining the 

right cellular size (Waterlow, 1984). The mobilization of muscle protein may have a 

physiological significance when aimed at providing substrates for both gluconeogenesis and 

the synthesis of the acute phase reactants. However, up-regulations of  protein degradation 

rates exceeding protein synthesis may result in skeletal muscle wasting (see below). From 

this point of view, the intuitive means to counteract the loss of muscle mass resulting from 

protein hypercatabolism, is to increase protein synthesis. However, in terms of rate 

equations, protein synthesis is a zero-order process, while degradation of the bulk of cell 

proteins is a first-order process described by a fractional rate constant. Consequently, under 

a given set of regulations, the size of the protein pool does not affect the fraction of proteins 

degraded. This means that, if the breakdown rate constant is higher than physiologic levels, 

protein loss will occur irrespectively of the protein synthesis rate (cf. Costelli and Baccino, 

2003). 

3. Mechanisms involved in muscle mass changes 

Muscle protein mass is regulated by both anabolic and catabolic signals. In particular, 
alterations in the balance between the two result in modulations of the skeletal muscle size, 
towards accretion or depletion when anabolic or catabolic pathways are prevailing, 
respectively. In this regard, pathological muscle depletion is characterized by a negative 
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nitrogen balance which results from disruption of the equilibrium between anabolism and 
catabolism, due to reduced synthesis, increased breakdown, or both. 

Generally speaking, muscle hypertrophy, either compensatory or due to working overload, 
is associated with up-regulation of protein synthesis. As reported above, particularly 
relevant in this regard are the activation of the PI3K/Akt/mTOR pathway induced by 
engagement of both insulin and IGF-1 receptors, as well as amino acid availability, BCAA in 
particular (see above). In addition, an important role in skeletal muscle enlargement is 
played by the protein phosphatase calcineurin (Musarò et al., 1999). As an example, rat 
myoblasts exposed to IGF-1 show a marked hypertrophic response that involves the 
enhancement of calcineurin expression, and that can be inhibited by the 
immunosuppressant agent cyclosporin A (Musarò et al., 1999). Similar observations have 
been performed also in the whole animal, where muscle hypertrophy induced by functional 
overload can be prevented by pharmacological inhibition of calcineurin with cyclosporin A 
or FK506 (Dunn et al., 1999).  

While the regulation of protein synthesis is substantially well defined, the mechanisms 

underlying the activation of cell protein degradation to supraphysiological levels have not 

been completely elucidated. Intracellular proteolysis in the skeletal muscle is operated by 

several systems. The lysosomal and the proteasomal ones, are able to degrade proteins into 

amino acids or small peptides. By contrast, both the Ca2+-dependent and the caspase 

pathways, characterized by a restricted catabolic specificity, only lead to a limited 

proteolysis of their substrates.  

The ATP-ubiquitin-dependent proteasome system is mainly involved in the degradation of 

damaged or rapid-turnover proteins. Degradation of its substrates mostly requires the 

covalent attachment of at least four ubiquitin molecules; the presence of such polyubiquitin 

chain targets the substrate to the 26S proteasome, a large cytosolic proteolytic complex. Both 

proteasomal activity and substrate ubiquitylation are ATP-dependent processes. About 

twenty years ago, the ubiquitin-proteasome system has been shown to contribute 

significantly also to bulk protein degradation. This has become clear when increased 

expression of molecules pertaining to this proteolytic system have been reported in 

experimental conditions characterized by muscle wasting, the more so when two muscle-

specific ubiquitin ligases, namely MAFbx/atrogin-1 and MuRF1 have been identified 

(reviewed in Costelli and Baccino, 2003). The former, in particular, is a component of the 

SCF complex, involved in targeting proteins for proteasomal degradation; such complex is 

formed by two molecules, SKP-1 (S) and Cullin-1 (C), that may be associated with a large 

series of F-box subunits (F), responsible for substrate specificity (Kipreos and Pagano, 2000). 

The results reported in the literature show that muscle wasting in several conditions such as 

sepsis, denervation, AIDS, diabetes, and cancer is associated with increased gene expression 

of both atrogin-1 and MuRF1 (Lecker et al., 2004). While the mechanisms regulating these 

ubiquitin ligases are not yet completely elucidated, hyperexpression of atrogin-1 has been 

proposed to depend on reduced signaling through the insulin/IGF-1 anabolic pathway 

(Sandri et al., 2004; Stitt et al., 2004), while activation of the NF-B transcription factor, likely 

cytokine-dependent, seems to drive the increase of MuRF1 mRNA levels (Cai et al., 2004).  

The autophagic-lysosomal degradative pathway, relatively non selective, is mostly 
responsible for the degradation of long-lived proteins as well as for the disposal of damaged 
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organelles (reviewed in Scott & Klionsky, 1998). Autophagy relies on the sequestration of 
portions of cytoplasm into double-membrane vesicles (autophagosomes). These fuse with 
lysosomes, where the autophagic body is lysed, its content broken down, and the resulting 
degradation products made available for recycling (see Scott and Klionsky, 1998). Autophagy 
has been described in mammalian cells since the 1960s, however the underlying molecular 
mechanisms have been elucidated in the last years, with the identification of  a set of genes 
named ATG (autophagy-related; Klionsky et al., 2003). Autophagy occurs at a basal rate in 
normal growth conditions, however, it can be markedly enhanced by specific environmental 
stresses. A crucial role in the regulation of autophagic rate is played by mTOR (see above). 
Under nutrient-rich conditions mTOR is active and autophagy is inhibited. By contrast, mTor 
is inactivated by nutrient starvation, and autophagic degradation is enhanced (Codogno & 
Mejier, 2005). The contribution of autophagy to skeletal muscle protein breakdown has been 
recognized only in the last years, although an altered lysosomal function has previously been 
reported in several myopathies (Bechet et al., 2005). In this regard, the skeletal muscle has been 
shown to respond to a classical autophagic stimulus such as starvation by increasing the levels 
of the autophagic marker LC3B-II (Mizushima et al., 2004). These results are consistent and 
further substantiate previous reports showing that autophagy is the main proteolytic pathway 
involved in the amino acid-dependent regulation of proteolysis in cultured myotubes (Bechet 
et al., 2005). On this line, increased gene expression of cathepsins L or B has been reported in 
the skeletal muscle of septic or tumor-bearing animals (Deval et al., 2001) as well as in muscle 
biopsies from lung cancer patients (Jagoe et al., 2002). In addition, skeletal muscle wasting in 
tumor-bearing rats has been shown to be associated with enhanced activity of lysosomal 
proteases (Greenbaum and Sutherland, 1983; Tessitore et al., 1993). Consistently, 
administration of leupeptin, an inhibitor of cysteine proteases, counteracts the loss of muscle 
mass that occurs in sepsis and in experimental cancer cachexia (Ruff and Secrist, 1984; 
Tessitore et al., 1994). More recently, ATGs have been shown to be  induced in muscle by 
denervation or fasting, through a FoxO3-dependent mechanism (Zhao et al., 2007). In this 
regard, FoxO3 has been proposed to regulate both autophagy and proteasome-dependent 
proteolysis (Zhao et al., 2007). However, a sort of hierarchy appears to exist between these two 
processes, since a parallel study shows that autophagic degradation induced by starvation or 
FoxO3 overexpression is sufficient to determine muscle depletion even if the ubiquitin-
proteasome degradation is blocked using pharmacological or genetic approaches (Mammucari 
et al., 2007).  

Quite intriguing is the role of the Ca2+-dependent proteolytic system in the pathogenesis of 
muscle protein hypercatabolism. Cysteine proteases called calpains, and a physiological 
inhibitor named calpastatin, are the components of the Ca2+-dependent proteolytic system. 
Calpains have been involved in processes such as cell proliferation, differentiation, 
migration, apoptotic death, and gene expression (Suzuki et al., 2004). A number of proteins, 
among which protein kinase C, Cdk5, Ca2+/calmodulin-dependent protein kinase IV, 
calcineurin, titin and nebulin have been proposed as in vivo calpain substrates (reviewed in 
Suzuki et al., 2004). Due to restricted specificity, however, calpain action is limited, and 
generally leads to irreversible modifications of the substrates, resulting in activity 
modulations or in increased susceptibility to the action of other degradative pathways (cf. 
Saido et al., 1994; Williams et al., 1999). Although thiol proteinase inhibitors have been 
proposed to be ineffective in counteracting muscle protein degradation in experimental 
cachexia (Temparis et al., 1994; Baracos et al., 1995), other reports have shown that 
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administration of leupeptin is able to protect rats bearing the Yoshida ascites hepatoma AH-
130 from muscle wasting, and that Ca2+-dependent proteolysis is activated in muscles and 
heart of the AH-130 hosts (Costelli et al., 2001, unpublished observations). Similar 
observations suggesting the involvement of calpains in the pathogenesis of muscle depletion 
have been reported in septic rats administered dantrolene, an inhibitor of intracellular Ca2+ 
release; such treatment results in prevention of muscle wasting as well as of 
hyperexpression of calpains and of molecules pertaining to the ubiquitin–proteasome 
system (Williams et al., 1999; Wray et al., 2002). These reports are particularly intriguing 
since they propose that Ca2+-dependent proteolysis may be a necessary step to allow the 
release of myofibrillar proteins from the sarcomere, rendering them susceptible to 
degradation by the ubiquitin–proteasome system. Finally, a report has demonstrated that 
hyperexpression of calpastatin partially protects mice from unloaded-induced muscle 
atrophy (Tidball & Spencer, 2002).  

Similarly to calpains, also the caspase system, can only operate a partial proteolysis of its 
substrates. Caspases are a family of cysteine proteases mostly known for their role in the 
initiation and execution of the apoptotic process. Few years ago, some studies proposed that 
caspase 3 could also share with calpains the role as triggers of the initial proteolytic step 
needed to render myofibrillar proteins available for degradation by the proteasome. In this 
regard, recombinant caspase-3 has been shown to cleave actomyosin complexes, and 
caspase-3 inhibitors can prevent the accumulation of actin fragments in the skeletal muscles 
of diabetic or uremic rats (Du et al., 2004). Consistently with these observation, caspase-3 
knock-out mice have been shown to be resistant to denervation-induced muscle atrophy 
(Plant et al., 2009). In addition, myofibrillar proteins damaged by oxidation appear more 
susceptible to degradation by caspase-3 (Smuder et al., 2010), while a recent study reports 
that caspase 3 cleaves specific proteasome subunits in myotube cultures, leading to 
enhanced proteasome enzymatic activity (Wang et al., 2010). Finally, muscle atrophy that 
occurs in Duchenne muscular dystrophy or in heart failure has been associated with 
reduced myonuclei number, suggesting  that caspases may contribute to muscle depletion 
also by inducing apoptotic events (Sandri, 2002).  

While several evidence support the concept that hypercatabolism is the major cause of muscle 
protein depletion, the trigger(s) of such enhanced metabolism remain still elusive. in this 
regard, humoral mediators are now widely accepted to play a crucial role. Indeed, altered 
production/release of classical hormones and cytokines generates a complex network that 
results in inhibition of anabolic and/or anticatabolic signals, favoring the degradative side of 
protein turnover. Consistently, the muscle wasting pattern observed in experimental and 
human cachexia or in aging-associated sarcopenia has been shown to be prevented by insulin 
administration or by local overexpression of IGF-1 (Tessitore et al., 1994; Musarò et al., 2001; 
Lundholm et al., 2007). On the other side, circulating glucocorticoids are frequently elevated at 
supraphysiological levels in several chronic pathologies, and have been shown to exert a clear 
catabolic effect (see Schakman et al., 2009). At least the proteasome and the lysosomal-
dependent proteolytic systems are susceptible of regulation by the hormonal milieu. Indeed, 
insulin is one of the most powerful autophagy inhibitors (Pfeifer, 1977), is able to reduce the 
expression of both ubiquitin and 14-kDa E2 mRNA, and to down-regulate proteasome 
activities (Wang et al., 2006). By contrast, glucocorticoid treatment increases the expression of 
ubiquitin, 14-kDa E2 and 20S proteasome subunit in rat skeletal muscle (see Schakman et al., 
2009). Muscle wasting and modulations of ubiquitin expression and proteasome activities 
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have also been reported in experimental animals treated with the cytokines TNF or IL-1 
(Tisdale, 2008). The relevance of cytokines to the onset of muscle wasting at least in cancer 
cachexia have been demonstrated by studies showing that loss of muscle mass, protein 
hypercatabolism and ubiquitin hyperexpression can be prevented by administration of 

antibodies against TNF, IFN or IL-6 (reviewed in Costelli and Baccino, 2003). Consistently 
with these observations, perturbation in cytokine homeostasis have been reported also in 
cancer patients, where a positive correlation with both disease progression and mortality rate 
takes place (Attard-Montalto et al., 1998; Nakashima et al., 1998). In addition, proinflammatory 
cytokines have been shown to contribute to muscle depletion also in non-neoplastic chronic 

diseases. Indeed, sepsis is characterized by increased circulating levels of TNF, IL-1 and IL-6, 
that appear correlated with severity and lethality. Similarly, a shift towards the 
proinflammatory side of the cytokine balance has been reported in patients affected by AIDS 
(Kedzierska & Crowe, 2001), likely accounting for muscle protein hypercatabolism frequently 
occurring in such patients before the adoption of combined anti-retroviral therapy (HAART; 
Mangili et al., 2006). Finally, also the sarcopenia and the loss of muscle quality that 
characterize aging are associated with enhanced levels of proinflammatory mediators (Lee et 
al., 2007).  

In addition to altered protein turnover rates, modulations of the myogenic process have 
been proposed to contribute to the pathogenesis of muscle wasting. In this regard, one key 

mediator of muscle depletion, TNF, has been reported to regulate myogenesis with 

opposite outcomes. Local increase of TNF in cardiotoxin-injured muscle has been shown to 

promote regeneration (Chen et al. 2005), while systemic increase of TNF in vivo and 
elevated concentrations of the cytokine in vitro inhibit skeletal myogenesis (Guttridge et al. 

2000; Coletti et al. 2002; 2005). In particular, exposure of C2C12 myotube cultures to TNF 
leads to down-regulation of both MyoD and myogenin (Guttridge et al., 2000). MyoD 

appears down-regulated also in a TNF-dependent experimental model of cancer cachexia 

(Costelli et al., 2005). A different study has shown that TNF induces MyoD degradation 
through an unusual mechanism involving NF B activation (Guttridge et al. 2000), while 
recently MyoD hjas been demonstrated to be a substrate of the ubiquitin ligase atrogin-1 
(Tintignac et al., 2005). Down-regulation of myogenesis may also depend on impaired stem 
cell recruitment. In this regard, deregulation of stem cell number or activation has been 

shown to result in decreased muscle mass (Nicolas et al., 2005). Moreover, TNF has been 
proposed to abrogate stem cell function, resulting in delayed or impaired muscle 
regeneration in mice after injury (Moresi et al., 2008). A compromised regenerative capacity 
has also been reported in tumor-bearing mice (Coletti et al., 2005; Penna et al., 2010a); such a 
pattern is associated with the appearance of hematopoietic stem cell infiltration the skeletal 
muscle, quantitatively more important in the tumor hosts than in controls (Coletti et al., 
2005). Muscle atrophy induced in mice by aging or hindlimb suspension has also been 
associated with loss of muscle precursor cells, that results in reduced regenerative potential 
(Mitchell and Pavlath 2004).  

4. Protein kinases in the pathogenesis of skeletal muscle wasting 

Few kinase systems have been involved in the pathogenesis of muscle atrophy, the one 

regulated by growth factors such as insulin or IGF-1, the Mitogen Activated Protein Kinases 

(MAPKs), and the energy sensor AMP-activated protein kinase (AMPK). 
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Insulin/IGF-1 receptors are endowed with an intrinsic tyrosine kinase activity, that is 

stimulated by interaction with the specific ligands. After engagement, receptor 

autophosphorylation allows the recruitment of IRS (insulin receptor substrate) factors. 

Tyrosine-phosphorylated IRS activates PI3K, producing phosphoinositide-3,4,5-

triphosphate (PIP3). PIP3 acts on phosphoinositide-dependent kinase 1 (PDK1), which in 

turn phosphorylates and activates Akt. This kinase is well known for mediating anabolic 

signals (see above) through the indirect activation of mTOR, that requires the inhibition of 

TSC (tuberous sclerosis complex). Once phosphorylated, mTOR may participate to two 

different protein complexes, the Raptor-containing TORC1, sensitive to inhibition by 

rapamycin, and the Rictor-containing TORC2, which cannot be blocked by  rapamycin 

(reviewed in Schiaffino & Mammucari, 2011). While the latter is required for Akt activation, 

mTORC1 phosphorylates p70S6K, stimulating protein synthesis. In addition to TORC1, 

protein synthesis induction also relies on Akt-dependent GSK3┚ inhibition, that 

consequently removes the blockade impinging on the elongation factor eIF-2B. Active Akt 

also down-regulates protein breakdown by inactivating FoxO factors, thus inhibiting the 

transcription of the so called 'atrogenes', among which the muscle-specific ubiquitin ligases 

atrogin-1 and MuRF1 (Sandri et al., 2004; Stitt et al., 2004). FoxO3, in particular, has been 

proposed to contribute also to the regulation of LC3, an essential actor in the 

hyperactivation of the autophagic-lysosomal proteolysis (Zhao et al., 2007). Akt activation is 

influenced by several regulative mechanisms. Indeed, it is inhibited by p70S6K, through IRS 

inactivation by phosphorylation of serine residues, while it is induced by mTORC2 (see 

above). The PI3K/Akt pathway plays a pivotal role in modulating the skeletal muscle mass; 

indeed, it is upregulated in conditions characterized by muscle hypertrophy, while its 

disruption results in muscle atrophy (Glass, 2010). Not only, a hypertrophic phenotype 

occurs when Akt is hyperexpressed in skeletal muscle cells or is conditionally activated in 

the muscle of adult rats (Rommel et al., 2001; Lai et al., 2004). In addition, a protection 

against denervation-induced atrophy has been shown in transgenic mice overexpressing 

Akt (Bodine et al., 2001). Perturbations of the IGF-1 signaling pathway have been reported 

in both in vitro and in vivo models of muscle atrophy (reviewed in Glass, 2010). Indeed, the 

levels of active Akt are significantly reduced in C2C12 myotubes exposed to glucocorticoids 

or nutrient deprivation (Sandri et al., 2004). Decreased activity of the PI3K/Akt pathway has 

also been shown to occur in muscle wasting induced by denervation (Hornberger et al., 

2001), disuse (Sugiura et al., 2005), aging (Clavel et al., 2006) or glucocorticoid treatment 

(Schakman et al., 2008). By contrast, levels of phosphorylated Akt in the skeletal muscle of 

tumor-bearing animals are comparable to controls, or even increased (Penna et al., 2010b), 

although a down-regulation of Akt activation has been reported in patients affected by 

pancreatic cancer (Schmitt et al., 2007). The maintenance of p-Akt  levels in experimental 

cancer cachexia is particularly intriguing, since circulating IGF-1 and insulin levels are 

markedly reduced in the tumor-bearing animals (Costelli et al., 2006), and muscle wasting 

can be prevented by administration of insulin, though not of IGF-1 (Costelli et al., 2006; 

Tessitore et al., 1994). Akt phosphorylation mainly relies on the balance between the activity 

of PI3K and the phosphatases PTEN and PP2A. In particular, reduced PTEN activation has 

been observed in the skeletal muscle of fasted animals, likely to counteract Akt down-

regulation, in the attempt to preserve muscle proteins (Hu et al., 2007). However, both 

phosphatases are comparably expressed in the skeletal muscle of control and tumor-bearing 
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animals. In addition to Akt, also other molecules involved in the regulation of protein 

synthesis, such as eIF2, eIF-4B, p70S6K, are in an active state in the skeletal muscle of tumor-

bearing animals; however, previous results show that the rates of protein synthesis are not 

increased, but just maintained at control levels (Costelli et al., 2005, Tessitore et al., 1994). 

Whether this results from the lack of specific aminoacids or from activation/inactivation of 

other unknown mechanisms is not clear. In this regard, an inhibition of protein synthesis 

could result from the atrogin-1-dependent degradation of eIF-3F, a scaffold protein that 

coordinates both mTOR- and p70S6K-mediated translation. On the same line, protein 

synthesis has been proposed to be regulated by MuRF-1, independently from the PI3K/Akt 

pathway (Clarke et al., 2007; Koyama et al., 2008). 

Four main MAPKs have been identified in mammals: JNK (1-3) and p38 (-), activated by 
stress conditions, and the extracellular signal related ERK 1/2 (hereafter referred to as ERK) 
and ERK5, or big MAPK (Raman et al., 2007). MAPKs are activated by phosphorylation of 
both threonine and tyrosine residues by MAPK-kinases (MKKs) and inactivated by specific 
phosphatases such as the MAPK-phosphatase 1 (MKP-1; Raman et al., 2007). MAPKs are 
recognized as being of crucial importance in the process of myogenesis, although their role 
in the different steps of new fiber formation and specification still needs to be clarified. As 
an example, Ras-dependent ERK activation has been shown to lead to MHC-I expression, 
resulting in slow-fiber type differentiation (Murgia et al., 2000). These observations 
however, are in contrast with different studies reporting that ERK activation inhibits 
myotube formation (Miyake et al., 2009), while recent reports show that ERK activation is 
higher in fast- than in slow-twitch muscles (Shi et al., 2007) and that inhibition of MAPK 
signaling leads to a shift of fast fibers towards the slow-twitch phenotype (Shi et al., 2008). 
The activation of p38 appears required to phosphorylate substrates involved in myogenesis, 
as well as to induce MHC-IIx expression in myoblasts (Meissner et al., 2007). Indeed, p38 
modulates the expression of myogenic regulatory factors (MRFs), such as Myf5, and the 
activities of transcription factors belonging to the MEF2 and MyoD families. A reciprocal 
regulation has been proposed to exist between p38 and ERK. While the former inhibits ERK, 
withdrawing myocytes from the cell cycle and enhancing muscle differentiation, ERK 
inhibition results in marked activation of p38 (Keren et al., 2006). In this regard, the 
interaction between these two kinases, likely leading to a defective activation of p38, has 
been proposed to play a role in the development of rhabdomyosarcoma (Puri et al., 2000). In 
addition to the reciprocal regulation with ERK, a cross-talk between p38 and JNK also takes 
place. Initially described in cardiomyocytes, it has now been demonstrated also in the 
skeletal muscle. In particular, p38 has been shown to antagonize the proliferative signal 
driven in myoblasts by JNK-dependent cyclin D1 transcription, shifting cells towards 
differentiation (Perdiguero et al., 2007). Consistently, p38 deficient myoblasts are 
characterized by a prominent JNK phosphorylation, that appears to depend, partially at 
least, on reduced expression of MKP-1 (Perdiguero et al., 2007). Finally, JNK  has been also 
involved in the activation of caspases in atrophying skeletal muscles (Supinski et al., 2009). 

Several situations characterized by muscle wasting, among which aging, type II diabetes, 
COPD, and inflammatory myopathies are associated with increased MAPK 
phosphorylation, p38 in particular (reviewed in Glass, 2010). Activation of p38 stimulates 
atrophy by enhancing the expression of atrogin-1 and MuRF1(Li et al., 2005; Romanello et 
al., 2010) This is also evident from in vitro experiments, showing that the increased 
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expression of atrogin-1 and MuRF-1 induced by TNF-┙ in C2C12 myotubes as well as the 
induction of the ubiquitin-specific protease-19 by cigarette smoke in L6 cultures are 
prevented by p38 inhibitors (Li et al., 2005; Liu et al., 2011). Similarly, atrogin-1 upregulation 
and muscle mass depletion induced by lipopolysaccharide (LPS) in mice depend on p38 
activation; indeed, such effects are inhibited by curcumin administration, that leaves intact 

LPS ability to modulate both NF-B and Akt activity (Jin & Li, 2007). LPS exerts its 
bioactivity through  Toll-like receptors (TLR), in particular TLR4, expressed on both 
macrophages and muscle cells. Signaling through this receptor may significantly impinge on 
muscle protein degradation for multiple reasones: TLR4 engagement leads to p38 and NF-

B activation; this could result in the upregulation of atrogin-1 and MuRF1 in the muscle, 
directly, or indirectly, through the release of proinflammatory mediators by macrophages. 
In addition, TLR4 has recently been involved in the activation of autophagy, increasing 
autophagosome formation by a p38-dependent mechanism (Doyle et al., 2011). Activation of 
p38 has also been shown to occur in response to mechanical or electrical stimulation, and 
functional overload of the skeletal muscle (Boppart et al., 2001; Huey, 2006; Sakamoto et al., 
2003;), suggesting that this kinase plays a role in both anabolic and catabolic responses. 
Among the targets of  p38 is MAPK-kinase 2 (MKK2), that appears involved in mediating 
p38 nuclear export (Gorog et al., 2009). MKK2 is phosphorylated by p38 at two threonine 
residues, both necessary for the activation (Engel et al., 1995); phosphorylation at T317 
allows MKK2 export in a complex containing p38 itself (Ben-Levy et al., 1998; Meng et al., 
2002). Heat shock protein 27 (HSP27, Stokoe et al., 1992), involved in the regulation of actin 
filament dynamics, is a substrate of MKK2 (Guay et al., 1997). Phosphorylation of HSP27 is 
increased in skeletal muscle hypertrophy and decreased during atrophy (Huey, 2006; 
Kawano et al., 2007), while HSP27 hyperexpression is able to reduce skeletal muscle 
depletion due to disuse (Dodd et al., 2009). Finally, MKK2 expression is reduced also in 
denervation-induced atrophy (Norrby and Tagerud, 2010) . The occurrence of a cross-talk 
between MKK2/p38 and PI3K/Akt/mTor pathways has been proposed. In this regard, the 
MKK2/p38 complex exported from the nucleus appears to interact with a cytoplasmic 
HSP27/Akt complex (Wu et al., 2007). Similarly to Akt, also MKK2 can phosphorylate TSC2 
and FoxO1, thus impinging on both protein synthesis and catabolism (reviewed in Rosner et 
al., 2008).  

The involvement of ERK in the pathogenesis of skeletal muscle atrophy is quite 
controversial. ERK inactivation has been shown to result in muscle atrophy in the rat, 
irrespective of the fiber type (Shi et al., 2009), and to inhibit the hypertrophic response 

induced in fast muscles by treatment of the animals with 2-adrenergic agonists or IGF-1 
(Haddad & Adams, 2004; Shi et al., 2007). In addition, reduced levels of phosphorylated 
ERK have been demonstrated in age-induced sarcopenia (Carlson et al., 2009). In C2C12 
myotubes, ERK inhibition appeares required to stimulate ubiquitin ligase expression (Shi et 
al., 2008). Consistently, ubiquitin hyperexpression induced in L6 myotubes by 
glucocorticoids has been shown to depend on the activity of both MEK, the kinase upstream 
of ERK, and the Sp1 transcription factor (Marinovic et al., 2002). Constrasting observations 
have been reported, however. As an example, ERK activation in C2C12 cultures has been 
shown to result in reduced myotube size (Rommel et al., 1999), while its inhibition leads to a 
hypertrophic phenotype similar to that elicited by IGF-1 (Rommel et al., 1999). On the same 
line, the protection exerted against oxidative stress-induced damage in both C2C12 and L6 
myocytes by treatment with IGF-1 has been proposed to involve ERK activity (Yang et al., 
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2010). Finally, muscle atrophy due to immobilization by hind-limb suspension has been 
associated with increased levels of phosphorylated ERK (Kato et al., 2002). In addition to 
contribute in modulating adult skeletal mass, ERK has also been involved in the myogenic 
process. Indeed, FGF-induced activation of ERK has been shown to enhance the 
regenerative capacity of human satellite cells isolated from both young and old subjects, 
while proliferating fusion-competent myoblasts cannot be observed when ERK is inhibited 
(Carlson et al., 2009). Several humoral factors, such as IGF-1, proinflammatory cytokines 
and myostatin can contribute to activate ERK in the skeletal muscle. In particular, recent 

observations from our laboratory have shown that TNF-induced myotube reduction in size 
in C2C12 cultures is associated with ERK activation and increased myostatin expression 
(Lenk et al., 2009). Similar observation have been reported also in the skeletal muscle of 
tumor-bearing mice (Penna et al., 2010a). In this regard, myostatin has been previously 
proposed to activate ERK and to repress differentiation of C2C12 myocytes (Yang et al., 
2006), pointing to a causal relationship between myostatin and ERK biological activities.  

Increased levels of phosphorylated JNK in the skeletal muscle are characteristically 

observed in conditions of insulin resistance, such as obesity or type II diabetes (Masharani et 

al., 2011). JNK activation mediates insulin resistance by enhancing IRS phosphorylation at 

serine residues, thus inhibiting the transduction of IGF-1/insulin-dependent signals 

(Masharani et al., 2011). Oxidative stress consequent to lipotoxicity, as well as 

proinflammatory mediators (cytokines and others, such as homocysteine), derived or not 

from the adipose tissue, likely participate in activating JNK. This latter, together with ERK 

and p38 MAPKs, is also activated in the skeletal muscle after exercise; such activation 

depends on exercise-induced oxidative stress, being prevented by treatment of healthy 

volunteers with the antioxidant N-acetylcysteine (Petersen et al., 2011). Both JNK and its 

preferential substrate c-Jun are activated in the muscle of patients with chronic kidney 

failure (Verzola et al., 2011). Recent reports have shown that the activation of JNK that 

characterizes denervation-induced muscle atrophy can be prevented by targeted ablation of 

the adapter protein TRAF6 (Paul et al., 2010). By contrast, no changes in the levels of 

phosphorylated JNK have been observed in the skeletal muscle of animals bearing 

experimental tumors (Penna et al., 2010a). The signal transduction pathway dependent on 

JNK plays a role in the apoptotic response in several cell systems (Dhanasekaran & Reddy, 

2008). In this regard, muscle injury induced by cardiotoxin injection has been shown to be 

initially associated with JNK activation and perturbations in the Bax/Bcl-2 system, and 

subsequently with classical signs of apoptotic death such as cytochrome c release from 

mitochondria, caspase activation, PARP cleavage (Sinha-Hikim et al., 2007). The 

mechanisms underlying JNK-dependent apoptosis in cardiotoxin muscle injury is still 

unclear, however, increased NO production through iNOS induction might be involved 

(Sinha-Hikim et al., 2007). Consistently with these observation, diaphragm weakness 

induced by endotoxin treatment has been associated with JNK phosphorylation and caspase 

8 activation (Supinski et al., 2009). 

Finally, quite recent evidence support a role for AMPK in the pathogenesis of skeletal 

muscle wasting. This kinase mainly works as a sensor of intracellular energetic balance, but 

is also involved in the regulation of protein turnover. AMPK is switched on when the 

energy state of the cell is low; in the skeletal muscle, also fiber contraction, which is an 

energy dissipating process, leads to AMPK activation (Mihaylova & Shaw, 2011). The 
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interference exerted by AMPK on protein synthesis is mainly related to its ability to inhibit 

mTOR signaling (Mihaylova & Shaw, 2011). On the other side, AMPK has been shown to 

modulate protein degradation rates. Indeed, administration of AICAR, an AMPK agonist, to 

mice results in increased levels of phosphorylated AMPK, associated with enhanced 

atrogin-1 expression through a FoxO-dependent mechanism; such a pattern is inhibited by 

treating the animals with Compound C, an AMPK inhibitor (Nakashima et al., 2007; 

Romanello et al., 2010). AMPK activation has also been reported in the skeletal muscle of 

tumor-bearing animals  (Penna et al., 2010a ; White et al., 2011), where it is associated with 

marked alterations of mitochondrial morphology (Penna et al., unpublished observations). 

The AMPK-dependent pathway links the alterations in the mitochondrial system, including 

reduced ATP production, with the onset of muscle atrophy. In this regard, energy deficiency 

could result in AMPK-dependent FoxO activation. Taking into account that FoxO 

transcription factors have been also involved in the regulation of autophagy, and that this 

latter process is in charge of sequestration and degradation of damaged organelles, FoxO 

activation may contribute to mitochondrial loss, further enhancing energy imbalance.  

5. Protein kinase inhibitors to prevent skeletal muscle wasting 

Muscle wasting is now well accepted to derive from metabolic alterations due to the 

combined action of several factors that act in a complex network involving different signal 

transduction pathways. The result of such networking is clearly reflected on muscle protein 

turnover, ultimately leading to the onset of a protein hypercatabolic state. Muscle wasting in 

patients affected by chronic diseases, but also in 'healthy' elderly people (sarcopenia of 

aging), is a highly debilitating condition, that markedly impairs quality of life, recovery 

from illnesses, and tolerance to therapies. The result is a significant complications in the 

management of these persons, also with important consequences at the social care level. In 

this regard, therapeutic approaches aimed at interfering pharmacologically with the onset of 

tissue wasting need to be pursued. On the bases of results obtained in experimental models, 

a number of drugs have been proposed to counteract the development of muscle wasting. 

Among these are protein kinase inhibitors; the rationale for their use stands up from the 

observations reported by several studies demonstrating that protein kinases are of crucial 

relevance to the activation/inactivation of mechanisms involved in the 

depletion/preservation of skeletal muscle mass. 

About 25 years ago the first natural kinase inhibitor, namely staurosporine, able to block 

protein kinase C but also many other kinases, has been discovered. Subsequently, the 

specific inhibitor of p38, SB203580, has become available, opening the research of 

heterocyclic “drug-like” structures able to distinguish between different kinases. As an 

example, SB203580 binds to p38, but not to the closely related JNK (Dar and Shokat, 2011). 

Up to now, nine kinase inhibitors have currently been approved by the FDA (imatinib, 

gefitininb, sorafenib, erlotininb, sunitinib, dasatinib, nilotinib, lapatininb, pazopanib, 

PLX4032), however, there are many other small molecules endowed with similar properties. 

Most of these inhibitors bind in the ATP site, thus preventing kinase activation. The most 

relevant use for the inhibitors approved by FDA, mainly working as tyrosine-kinase 

blockers, is in the antineoplastic therapy. In this regard, imatinib, whose main target is the 

BCR-Abl kinase, has been the first to be used in the treatment of chronic myelogenous 
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leukemia, while sorafenib is currently administered to patients affected by renal or 

hepatocellular carcinoma (Dar and Shokat, 2011). 

Only recently protein kinase inhibitors have been proposed as a means to counteract the 

onset of skeletal muscle wasting. In this regard, we have recently demonstrated that 

treatment of mice bearing the C26 tumor with the ERK inhibitor PD98059 partially but 

significantly protects tumor hosts from the onset of body weight loss and muscle mass 

depletion (Penna et al., 2010a). ERK inhibition also results in normalization of atrogin-1 

hyperexpression, independently from the state of activation of Akt. Among the targets of 

ERK is the AP-1 transcription factor, which is activated in tumor-bearing animals (Costelli et 

al., 2005) and may contribute to muscle atrophy, since this latter is improved inhibiting AP-1 

by a c-jun dominant negative (TAM67; Moore-Carrasco et al., 2006) . AP-1 regulated genes 

may contribute to muscle depletion; as an example, cyclin D1 expression (Moore-Carrasco et 

al., 2006) could induce satellite cell proliferation, that not necessarily is followed by 

differentiation, resulting in impaired  myogenesis. The differential expression of specific 

factors defines the phenotype of satellite cells. In particular, while MyoD can be detected 

more or less throughout the myogenic process, high levels of Pax7 associated with low 

myogenin expression characterize proliferating satellite cells; an opposite pattern can be 

observed in differentiating cells (Halevy et al., 2004). Indeed, previous reports have shown 

that Pax7 hyperexpression results in inhibition of myogenesis (Olguin & Olwin, 2004). Low 

rates of myogenesis (satellite cell activation and differentiation) participate to the 

maintenance of physiological skeletal muscle mass (Nicolas et al., 2005). This is confirmed 

by observations showing that aging- or hindlimb suspension-induced muscle atrophy is 

associated with a reduced regenerative potential (Mitchell & Pavlath, 2004). Consistently, 

Pax7 expression is significantly increased in the muscle of C26 hosts with respect to controls, 

while myogenin levels are reduced. The pattern of Pax7 and myogenin expression in the 

C26-bearing mice is compatible with an impaired regenerative process and suggests the 

possibility that activated satellite cells accumulate in tumor host muscle because of either 

enhanced proliferation or impaired differentiation or both. Altered expression of myogenic 

factors has previously been reported in AH-130 hepatoma-bearing rats (Costelli et al., 2005), 

in cancer patients (Ramamoorthy et al., 2009), and in an experimental model of chronic 

kidney disease (Zhang et al., 2010). In the latter report, downregulation of IGF-1 signaling 

appears responsible for impaired regeneration (Zhang et al., 2010). The results obtained in 

our laboratory suggest an alternative mechanism based on ERK activation: when the C26 

hosts are treated with PD98059, and ERK is thus inhibited, Pax7 and myogenin expression is 

restored to control values. These observations suggest that ERK activation likely contributes 

to maintain satellite cells in an undifferentiated state (Penna et al., 2010a). 

Despite several reports have shown that p38 is involved in the induction of atrogenes as 
well as in the hyperactivation of protein degradation in different model systems, there are 
no studies demonstrating that its pharmacological inhibition in experimental animals may 
protect the skeletal muscle from wasting. In this regard, we have tested the effectiveness of 
the p38 inhibitor SB203580 in preventing skeletal muscle depletion in animals implanted 
with the C26 tumor. After a subcutaneous inoculum of about 106 C26 cells, death of the 
animals occurs in about 15 days; tumor growth is associated with progressive loss of body 
weight, depletion of both the skeletal muscle and the adipose tissue mass, as well as with 
markedly increased circulating levels of IL-6 (Penna et al., 2010a). Control and tumor-
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bearing mice have been treated daily with subcutaneous injection of 3 or 30 mg/kg initial 
body weight of SB203580, dissolved in DMSO and then diluted in saline, starting from the 
day after tumor implantation. No significant differences could be observed as for both 
muscle force (evaluated by grasping test; Fig. 1A), food intake (Fig. 1B) and tumor mass 
(C26: 231±93 mg, C26+SB203580 30 mg/kg: 249±31 mg). By contrast, an increase of body 
weight occurred in the group of tumor bearers that received SB203580 at the dose of 30 
mg/kg when compared to both treated or untreated controls (Fig.1C). Body weight 
accretion, however, does not reflect an effect on the skeletal muscle mass, that remains close 
to the values of untreated tumor hosts, while the weight of both liver and spleen is 
significantly higher in treated than in untreated C26 bearers, possibly reflecting drug 
toxicity (Fig. 1D).  

 

(A): voluntary muscle strength, evaluated by dynamometer, expressed in Newton; (B) food intake, 
expressed as the means amount of food (g) consumed be the animals every two days; (C) body weight 
(g), inclusive of the tumor; (D) muscle and tissue weight, expressed as percentages of controls. Date are 
represented as means ± SD (where not indicated SD is within 10% of the means), n = 8 for each 
experimental group. Significance of the differences: *p<0.05 vs. untreated controls, § p<0.05 vs. 
untreated C26 hosts. 

Fig. 1. Effect of treatment with SB203580 on cachexia in mice bearing the C26 colon 
carcinoma. 
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The results obtained by treating the C26 hosts with SB203580 could sound unexpected, since 
p38 has been shown to be involved in different mechanisms contributing to skeletal muscle 
depletion (see above). However, when analyzing the state of activation of MAPKs in two 
different experimental models, namely rats bearing the AH-130 hepatoma and the C26 
hosts, just ERK appears phosphorylated (active; Penna et al., 2010a), suggesting that the 
usual pattern of p38 involvement in muscle wasting likely does not apply to cancer 
cachexia. The other way round, p38 inhibition could have lead to a differential modulation 
of the mechanisms impinging on cancer-associated muscle wasting, mainly protein 
hypercatabolism and impaired myogenesis, worsening the latter and improving the former, 
or vice versa, resulting in lack of changes of muscle mass. Further work is warranted to 
clarify this point.  

Finally, imatinib mesylate (IM) administration has been shown to improve muscle 

pathology in mdx mice, an accepted model for the Duchenne-type muscle dystrophy. In 

particular, IM-treated mice show a less degree of muscle necrosis, inflammation and fibrosis 

than control animals. Such effects appear to depend on the inhibition exerted by the drug on 

the activation of both c-Abl and PDGFR on both peritoneal macrophages and muscle-

resident fibroblasts (Huang et al., 2009). Similar observations have been independently 

reported by another group (Bizario et al., 2009). Both reports suggest that treatment with IM 

exerts a marked anti-inflammatory effect, lowering the levels of proinflammatory cytokines. 

Keeping this in mind, we decided to test the effectiveness of IM in preventing muscle 

wasting in cancer cachexia, where the role played by the inflammatory state is widely 

accepted. The above cited C26 model has been used. IM has been administered with daily 

subcutaneous injection at the concentration of  400 mg/kg initial body weight, dissolved in 

water. Food intake have been recorded daily. At day 15 the animals have been sacrificed to 

evaluate the effects exerted by the treatment on body and tissue weight. The data reported 

in Figure 2 show that IM does not induce any detectable modifications when administered 

to healthy mice, demonstrating that the drug itself does not exert toxic effects on the 

animals. The treatment, however, is not able to correct the wasting pattern caused by the 

growth of the C26 tumor. Indeed, loss of body weight (Fig. 2A), cumulative food intake 

reduction (Fig. 2B), and mass depletion of gastrocnemius, tibialis anterior and heart (Fig. 2C) 

are comparable between treated and untreated tumor hosts. By contrast, spleen 

hypertrophy, a constant finding in the C26 hosts (Penna et al., unpublished observations; 

Fig. 1D, 2C), is completely prevented by treatment with IM (Fig. 2C), confirming the anti-

inflammatory effect of this drug. Finally, no significant differences could be observed as for 

tumor mass between mice administered IM or vehicle (C26: 325±86 mg, C26+IM: 253±79 mg, 

not statistically significant). 

The results show that while able to improve muscle phenotype in mdx mice (Bizario et al., 
2009; Huang et al., 2009), IM is ineffective in preventing muscle wasting in tumor-bearing 
animals, although it likely exert an anti-inflammatory action, as shown by the protection 
against spleen hypertrophy. These observations may suggest that the tyrosine kinases 
blocked by IM might not be involved in the pathogenesis of muscle wasting in cancer 
cachexia. However, the lack of effect could also depend on the different inflammatory 
situation occurring in the muscle of mdx mice and of tumor-bearing animals. Indeed, while 
the former is characterized by a marked inflammatory infiltrate, associated with an 
important fibrotic response, these alterations are quite lacking in the latter.  
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(A): body weight (g), inclusive of the tumor; (B) cumulative food intake (g) over the whole experimental 
period; (C) muscle and tissue weight, expressed as percentages of controls. Date are represented as 
means ± SD (where not indicated SD is within 10% of the means), n = 8 for each experimental group. 
Significance of the differences: *p<0.05 vs. untreated controls, § p<0.05 vs. untreated C26 hosts. 

Fig. 2. Effect of treatment with imatinib mesylate (IM) on cachexia in mice bearing the C26 
colon carcinoma. 

6. Conclusions 

Evidence coming from different experimental models have demonstrated the possibility to 
interfere with the onset of muscle protein hypercatabolism by several means, such as 
exercise, nutritional, and pharmacological interventions, better if combined. The growing 
amount of knowledge about the mechanisms underlying the alterations of muscle protein 
metabolism are highly relevant in this regard. Particular attention deserves the observation 
that several experimental results point to kinases as crucially involved in the 
activation/enhancement of the mechanisms leading to skeletal muscle depletion, either in 
physiological or pathological states. On this line, the availability of specific kinase inhibitors 
has opened the way to a direct evaluation of their possibility to be used as therapeutic tools 
to treat conditions characterized by skeletal muscle wasting. At present the results available 
in the literature are very few, and at least some of them appear encouraging. However, a 
note of care should be introduced, since inhibiting protein kinases would also impinge on 
transduction pathways physiologically relevant, rendering unavoidable an accurate 
estimate of the risk/benefit ratio. 
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