6,895 research outputs found

    Contravariant Boussinesq equations for the simulation of wave transformation, breaking and run-up

    Get PDF
    We propose an integral form of the fully non-linear Boussinesq equations in contravariant formulation, in which Christoffel symbols are avoided, in order to simulate wave transformation phenomena, wave breaking and near shore currents in computational domains representing the complex morphology of real coastal regions. The motion equations retain the term related to the approximation to the second order of the vertical vorticity. A new Upwind Weighted Essentially Non-Oscillatory scheme for the solution of the fully non- linear Boussinesq equations on generalised curvilinear coordinate systems is proposed. The equations are rearranged in order to solve them by a high resolution hybrid finite volume–finite difference scheme. The conservative part of the above-mentioned equations, consisting of the convective terms and the terms related to the free surface elevation, is discretised by a high-order shock- capturing finite volume scheme; dispersive terms and the term related to the approximation to the second order of the vertical vorticity are discretised by a cell-centred finite difference scheme. The shock-capturing method makes it possible to intrinsically model the wave breaking, therefore no additional terms are needed to take into account the breaking related energy dissipation in the surf zone. The model is applied on a real case regarding the simulation of wave fields and nearshore currents in the coastal region opposite Pescara harbour (Italy)

    Modeling bed evolution using weakly coupled phase-resolving wave model and wave-averaged sediment transport model

    Get PDF
    In this paper, we propose a model for the simulation of the bed evolution dynamics in coastal regions characterized by articulated morphologies. An integral form of the fully nonlinear Boussinesq equations in contravariant formulation, in which Christoffel symbols are absent, is proposed in order to simulate hydrodynamic fields from deep water up to just seaward of the surf zones. Breaking wave propagation in the surf zone is simulated by integrating the nonlinear shallow water equations with a high-order shock-capturing scheme. The near-bed instantaneous flow velocity and the intra-wave hydrodynamic quantities are calculated by the momentum equation integrated over the turbulent boundary layer. The bed evolution dynamics is calculated starting from the contravariant formulation of the advection-diffusion equation for the suspended sediment concentration in which the advective sediment transport terms are formulated according to a quasi-three-dimensional approach, and taking into account the contribution given by the spatial variation of the bed load transport. The model is validated against several tests by comparing numerical results with experimental data. The ability of the proposed model to represent the sediment transport phenomena in a morphologically articulated coastal region is verified by numerically simulating the long-term bed evolution in the coastal region opposite Pescara harbor (in Italy) and comparing numerical results with the field data

    Water confined in nanopores: spontaneous formation of microcavities

    Full text link
    Molecular Dynamics simulations of water confined in nanometer sized, hydrophobic channels show that water forms localized cavities for pore diameter ~ 2.0 nm. The cavities present non-spherical shape and lay preferentially adjacent to the confining wall inducing a peculiar form to the liquid exposed surface. The regime of localized cavitation appears to be correlated with the formation of a vapor layer, as predicted by the Lum-Chandler-Weeks theory, implying partial filling of the pore

    Early diagnosis of cardiovascular diseases in workers: role of standard and advanced echocardiography

    Get PDF
    Cardiovascular disease (CVD) still remains the main cause of morbidity and mortality and consequently early diagnosis is of paramount importance. Working conditions can be regarded as an additional risk factor for CVD. Since different aspects of the job may affect vascular health differently, it is important to consider occupation from multiple perspectives to better assess occupational impacts on health. Standard echocardiography has several targets in the cardiac population, as the assessment of myocardial performance, valvular and/or congenital heart disease, and hemodynamics. Three-dimensional echocardiography gained attention recently as a viable clinical tool in assessing left ventricular (LV) and right ventricular (RV), volume, and shape. Two-dimensional (2DSTE) and, more recently, three-dimensional speckle tracking echocardiography (3DSTE) have also emerged as methods for detection of global and regional myocardial dysfunction in various cardiovascular diseases, and applied to the diagnosis of subtle LV and RV dysfunction. Although these novel echocardiographic imaging modalities have advanced our understanding of LV and RV mechanics, overlapping patterns often show challenges that limit their clinical utility. This review will describe the current state of standard and advanced echocardiography in early detection (secondary prevention) of CVD and address future directions for this potentially important diagnostic strategy

    Coherent coupling between localised and propagating phonon polaritons

    Full text link
    Following the recent observation of localised phonon polaritons in user-defined silicon carbide nano-resonators, here we demonstrate coherent coupling between those localised modes and propagating phonon polaritons bound to the surface of the nano-resonator's substrate. In order to obtain phase-matching, the nano-resonators have been fabricated to serve the double function of hosting the localised modes, while also acting as grating for the propagating ones. The coherent coupling between long lived, optically accessible localised modes, and low-loss propagative ones, opens the way to the design and realisation of phonon-polariton based quantum circuits

    Retinoic acid-induced differentiation sensitizes myeloid progenitors cells to ER stress

    Get PDF
    The clonal expansion of hematopoietic myeloid precursors blocked at different stages of differentiation characterizes the acute myeloid leukemia (AML) phenotype. A subtype of AML, acute promyelocytic leukemia (APL), characterized by the chimeric protein PML-RARα is considered a paradigm of differentiation therapy. In this leukemia subtype the all-trans-retinoic acid (RA)-based treatments are able to induce PML-RARα degradation and leukemic blast terminal differentiation [1-2]. Granulocytic differentiation of APL cells driven by RA triggers a physiological Unfolded Protein Response (UPR), a series of pathways emanating from the ER in case of ER stress, which ensues when higher protein folding activity is required as during differentiation. We show here that, although mild, the ER stress induced by RA is sufficient to render human APL cell lines and primary blasts very sensitive to low doses of Tunicamycin (Tm), an ER stress inducing drug, at doses that are not toxic in the absence of RA. Importantly only human progenitors cells derived from APL patients resulted sensitive to the combined treatment with RA and Tm whereas those obtained from healthy donors were not affected. We also show that the UPR pathway downstream of PERK plays a major protective role against ER stress in differentiating cells and, by using a specific PERK inhibitor, we potentiated the toxic effect of the combination of RA and Tm. In conclusion, our findings identify the ER stress-related pathways as potential targets in the search for novel therapeutic strategies in AML

    Insufficient control of blood pressure and incident diabetes

    Get PDF
    OBJECTIVE: Incidence of type 2 diabetes might be associated with preexisting hypertension. There is no information on whether incident diabetes is predicted by blood pressure control. We evaluated the hazard of diabetes in relation to blood pressure control in treated hypertensive patients. RESEARCH DESIGN AND METHODS: Nondiabetic, otherwise healthy, hypertensive patients (N = 1,754, mean +/- SD age 52 +/- 11 years, 43% women) participated in a network over 3.4 +/- 1 years of follow-up. Blood pressure was considered uncontrolled if systolic was >or=140 mmHg and/or diastolic was >or=90 mmHg at the last outpatient visit. Diabetes was defined according to American Diabetes Association guidelines. RESULTS: Uncontrolled blood pressure despite antihypertensive treatment was found in 712 patients (41%). At baseline, patients with uncontrolledblood pressure were slightly younger than patients with controlled blood pressure (51 +/- 11 vs. 53 +/- 12 years, P < 0.001), with no differences in sex distribution, BMI, duration of hypertension, baseline blood pressure, fasting glucose, serum creatinine and potassium, lipid profile, or prevalence of metabolic syndrome. During follow-up, 109 subjects developed diabetes. Incidence of diabetes was significantly higher in patients with uncontrolled (8%) than in those with controlled blood pressure (4%, odds ratio 2.08, P < 0.0001). In Cox regression analysis controlling for baseline systolic blood pressure and BMI, family history of diabetes, and physical activity, uncontrolled blood pressure doubled the risk of incident diabetes (hazard ratio [HR] 2.10, P < 0.001), independently of significant effects of age (HR 1.02 per year, P = 0.03) and baseline fasting glucose (HR 1.10 per mg/dl, P < 0.001). CONCLUSIONS: In a large sample of treated nondiabetic hypertensive subjects, uncontrolled blood pressure is associated with twofold increased risk of incident diabetes independently of age, BMI, baseline blood pressure, or fasting glucose

    A hierarchical impact force reconstruction method for Aerospace composites

    Get PDF

    Insufficient control of blood pressure and incident diabetes

    Get PDF
    OBJECTIVE: Incidence of type 2 diabetes might be associated with preexisting hypertension. There is no information on whether incident diabetes is predicted by blood pressure control. We evaluated the hazard of diabetes in relation to blood pressure control in treated hypertensive patients. RESEARCH DESIGN AND METHODS: Nondiabetic, otherwise healthy, hypertensive patients (N = 1,754, mean +/- SD age 52 +/- 11 years, 43% women) participated in a network over 3.4 +/- 1 years of follow-up. Blood pressure was considered uncontrolled if systolic was >or=140 mmHg and/or diastolic was >or=90 mmHg at the last outpatient visit. Diabetes was defined according to American Diabetes Association guidelines. RESULTS: Uncontrolled blood pressure despite antihypertensive treatment was found in 712 patients (41%). At baseline, patients with uncontrolledblood pressure were slightly younger than patients with controlled blood pressure (51 +/- 11 vs. 53 +/- 12 years, P < 0.001), with no differences in sex distribution, BMI, duration of hypertension, baseline blood pressure, fasting glucose, serum creatinine and potassium, lipid profile, or prevalence of metabolic syndrome. During follow-up, 109 subjects developed diabetes. Incidence of diabetes was significantly higher in patients with uncontrolled (8%) than in those with controlled blood pressure (4%, odds ratio 2.08, P < 0.0001). In Cox regression analysis controlling for baseline systolic blood pressure and BMI, family history of diabetes, and physical activity, uncontrolled blood pressure doubled the risk of incident diabetes (hazard ratio [HR] 2.10, P < 0.001), independently of significant effects of age (HR 1.02 per year, P = 0.03) and baseline fasting glucose (HR 1.10 per mg/dl, P < 0.001). CONCLUSIONS: In a large sample of treated nondiabetic hypertensive subjects, uncontrolled blood pressure is associated with twofold increased risk of incident diabetes independently of age, BMI, baseline blood pressure, or fasting glucose
    • …
    corecore