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Abstract 

We propose an integral form of the fully non-linear Boussinesq equations in 
contravariant formulation, in which Christoffel symbols are avoided, in order to 
simulate wave transformation phenomena, wave breaking and near shore 
currents in computational domains representing the complex morphology of real 
coastal regions. The motion equations retain the term related to the 
approximation to the second order of the vertical vorticity. A new Upwind 
Weighted Essentially Non-Oscillatory scheme for the solution of the fully non-
linear Boussinesq equations on generalised curvilinear coordinate systems is 
proposed. The equations are rearranged in order to solve them by a high 
resolution hybrid finite volume–finite difference scheme. The conservative part 
of the above-mentioned equations, consisting of the convective terms and the 
terms related to the free surface elevation, is discretised by a high-order shock-
capturing finite volume scheme; dispersive terms and the term related to the 
approximation to the second order of the vertical vorticity are discretised by a 
cell-centred finite difference scheme. The shock-capturing method makes it 
possible to intrinsically model the wave breaking, therefore no additional terms 
are needed to take into account the breaking related energy dissipation in the surf 
zone. The model is applied on a real case regarding the simulation of wave fields 
and nearshore currents in the coastal region opposite Pescara harbour (Italy). 
Keywords: contravariant formulation, Boussinesq equations, breaking waves, 
run-up, shock-capturing methods.   
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1 Introduction 

The modelling of surface wave transformation, wave breaking and run-up are of 
fundamental importance for the simulation of hydrodynamic phenomena which 
occur in coastal regions. Most of these phenomena can be represented by wave-
resolving models which are based on the combined solution of the Boussinesq 
equations for the representation of wave propagation from deep water up to just 
seaward of the surf zone and the non-linear shallow water equations for the 
representation of wave propagation in the surf zone (Tonelli and Petti [1]; Shi et 
al. [2]). These models are able to take into account the non-linear wave-wave 
interactions, the fully coupled wave-current interactions and the breaking related 
near shore currents. 
     Chen [3] improved the representation of the breaking induced coastal 
circulations by retaining in the motion equations second order terms related to 
the vertical component of the vorticity. 

2 Conservative form of the Cartesian fully non-linear 
Boussinesq equations 

Let H h    be the total local water depth, where h  is the local still water 
depth and   is the local surface displacement. Using a Taylor expansion of the 
velocity about an arbitrary distance from the still water surface,  , and assuming 
zero horizontal vorticity, as proposed by Chen [3], the vertical distribution of the 
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     The modelling of hydrodynamics over computational domains representing 
the complexity of real case morphologies can be done both by using unstructured 
grids (Casonato and Gallerano [4]; Cioffi et al. [5]; Gallerano and Napoli [6]; 
Sørensen et al. [7]) and computational grids obtained by the intersection of 
boundary conforming coordinate lines. Using curvilinear computational grids the 
equations can be written in contravariant formulation (Shi et al. [2]; Gallerano 
and Cannata [8, 9]; Zijlema et al. [10] and Gallerano et al. [11]). 
     In this paper we present a new Boussinesq type model whose equations are 
written in a contravariant formulation and solved on curvilinear grids 
representing the complex morphology of the real case studies. The equations at 
the base of this model are derived starting from the fully non-linear formulation 
of the Boussinesq equations proposed by Chen [3] and consistently with this 
formulation they retain the term related with the second order vertical vorticity. 
The model is able to represent wave evolution in coastal regions, the breaking 
phenomenon, the breaking induced longshore and rip currents, the effect of 
offshore structures on the hydrodynamics, the interaction of the wave motion 
with the river mouths and run-up hydrodynamics in swash zone. 
     An upwind WENO scheme for the solution of the equations on generalized 
curvilinear grids is used in this work. The conservative terms are solved by a 
high-order finite volume shock-capturing scheme in which an exact Riemann 
solver is involved. 



horizontal velocity can be written as 2( )u u u z 
  

, where u


 is the horizontal 

velocity at an arbitrary distance from the still water level, z   and 
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 consists of the second 

order terms in depth power expansion of the velocity vector in which   is the 
two-dimensional differential operator defined as in a ( , )x y       Cartesian 

reference system. 

     The following vectors can be defined: r Hu
 

 and 2s Hu
 

, in which 2u


 is 

the depth averaged value of 2 ( )u z


. G  is the constant of gravity. 

     We consider a transformation    1 2( , )l lx x  from the Cartesian coordinates 

x  to the curvilinear coordinates 


 (note that hereinafter the superscript indicates 

the generic component and not the powers). Let   
 
( )

l
lg x  be the covariant 

base vectors and   
 ( )l lg x  the contravariant base vectors. The metric tensor 

and its inverse are defined, respectively, by  
 
( ) ( )lm l mg g g  and  

 ( ) ( )l mlmg g g  

( , 1,2l m ). The Jacobian of the transformation is  det( )lmg g . The 

transformation relationships between the components of the generic vector in 
the Cartesian coordinate system and its contravariant and covariant components, 
lb  and lb , in the curvilinear coordinate system are given by 

     
       ( ) ( )
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l ll lb g b b b g b g b b b g . In the following equations, a comma 

with an index in a subscript stands for covariant differentiation. The covariant 
derivative is defined as     , /l l m l k

m mkb b b , where lmk  is the Christoffel 

symbol (Aris [12]) given by     
 ( )

( ) /
ll m

mk kg g . 

     Let lr  be the l th  contravariant component of a vector 

r  defined by 

   'l l lr r HV . Let A  be the area of the generic surface element and 
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0 0( , )
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1 2

( ) ( ) ,k kg g . The integral contravariant form of 

the continuity and momentum can be expressed as 
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where L is the contour line of A  and mn  is the m th  component of 
the covariant outward normal. In eqn. (1) the second term on the left-hand side 
is the flux term. In eqn. (2) the second term on the left hand side is the flux term, 
the first term on the right hand side is the source term related to the bottom slope, 
the second term on the right hand side, lR , is the bottom resistance term. 
Expressions for terms ls , 'lV , ''lV , lT  and lW  are given by 

    

      
                                          
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where 

  
1 1

( , ) (1,2); ( , )

(1,2);0 .

mi if m i is an even permutation of if m i is an odd permutation
g g

of if the two indices are equal

 

     The eqns (1) and (2) represent the integral expressions of the fully non-linear 
Boussinesq equations in contravariant formulation in which Christoffel symbols 
are absent. These equations are accurate to  2( )O and  2( )O  in dispersive terms 

and retain the conservation of potential vorticity up to  2( )O , in accordance with 

the formulation proposed by Chen [3].

 
     The eqns (1) and (2) are solved by a hybrid finite volume-finite difference 
scheme. Convective terms and terms related to the free surface elevation gradient 
are discretized by a high order finite volume upwind WENO scheme; dispersive 
terms and the term related to the second order vertical vorticity are discretized by 
a finite-difference scheme. The upwind WENO scheme needs a flux calculation 
at the cell interfaces. These fluxes are calculated by means of the solution of a 
Riemann problem. An exact Riemann solver is used in this work. No additional 
dissipative term to improve the modelling of breaking related energy decay and 
breaking induced near shore circulation is used in this paper. 
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3 The numerical scheme 

The numerical integration of eqns (1) and (2) is carried out by a high order 
upwind WENO hybrid finite volume-finite difference scheme. The conservative 
part of the above-mentioned equations, consisting of the convective terms and 
the terms related to the free surface elevation, is discretized by a high-order 
shock-capturing finite volume scheme; dispersive terms and the term related to 
the approximation to the second order of the vertical vorticity are discretized by 
a cell-centred finite difference scheme. The shock-capturing method makes it 
possible to intrinsically model the wave breaking, therefore no additional terms 
are needed to take into account the breaking related energy dissipation in the surf 
zone. 
     The computational domain discretization is based on a grid defined by the 
coordinate lines  1  and  2  and by the points of coordinates   1 1

i i  and 

  2 2
j j , which represent the centres of the calculation cells 

          1 1 2 2
; 1/2 1/2 1/2 1/2, ,i j i i i iI . nt  is the time level of the known variables, 

while    1n nt t t  is the time level of the unknown variables. Let us indicate 
with 1 2( , )r rL  and with 1 2( , )s sBL  respectively the first and the second term on 

the right hand side of eqn. (13). Let us indicate with 1 2( , , )H r rD  the numerical 

approximation of the sum of the convective and free surface elevation terms 
(which is split in order to ensure a well-balanced scheme) on the right hand side 
of eqn. (2) and with 1 2 1 2( , , , , )H r r s sBD  the bottom friction term, the numerical 

approximation of the sum of dispersive terms and the term related to 
the approximation to the second order of the vertical vorticity on the right-hand 
side of this equation. By integrating eqns (1) and (2) over   

1,n nt t  we get 

                     


        1

( 1) ( ) 1 2 1 2
; ;

1
( , ) ( , )

n

n

tn n
i j i j t

H H r r s s dt
A

BL L                            (8) 

         


       

1
( 1) ( )* * 1 2 1 2 1 2
; ;

1
( , , ) ( , , , , )

n

n

tl n l n
i j i j t
r r H r r H r r s s dt

A
BD D                    (9) 

Eqns (8) and (9) represent the advancing from time level nt  to time level 1nt   of 
the variables  ;i jH  and  *;li jr . The state of the system is known at the centre of the 
calculation cell and it is defined by the cell-averaged values  ;i jH  and  *;li jr . In this 
paper, time integration of eqns (8) and (9) is carried out by means of a third order 
accurate Strong Stability Preserving Runge-Kutta method (SSPRK) reported in 
Spiteri and Ruuth [13]. The SSPRK method can be written in compact form as 
follows 

                                           
    (0) ( ) (0) ( )* *

; ; ; ;;n l l n
i j i j i j i jH H r r                                          (10) 

                  
 


       1( ) ( ) 1( ) 2( ) 1( ) 2( )

; ;0
( , ) ( , )

pp q q q p p
pq pqi j i jq

H H t r r s sBL L
               

 (11) 

 
 


       1( ) * ( ) ( ) 1( ) 2( ) ( ) 1( ) 2( ) 1( ) 2( )*

; ;0
( , , ) ( , , , , )

pl p l q q q q p p p p p
pq pqi j i jq

r r t H r r H r r s sBD D  (12) 

                                        
     ( 1) (3) ( 1) (3)* *
; ; ; ;;n l n l
i j i j i j i jH H r r

                                      
 (13) 
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where  1;2;3p . See Spiteri and Ruuth [13] for pq  and pq  values. The 

computation of 1 2( , )r rL , 1 2( , , )H r rD , 1 2( , )s sBL  and 1 2 1 2( , , , , )H r r s sBD  terms 

needs the numerical approximation of the spatial integrals on the right-hand side 
of eqns (1) and (2). This numerical approximation is carried out by means of a 
hybrid finite volume-finite difference scheme as used by Shi et al. [2]. By 
applying this method, once the values of the auxiliary variable  *lr  are known, 

the values of the original variables  lr  at each stage of the Runge–Kutta method 
are computed solving the following equation 
 

                                                        * 'l l lr r HV                                                  (14) 

in which  ' lV  includes first and second derivative of  /lr H  with respect to  1  

and to  2  and cross derivatives. The numerical approximation of the derivatives 
in the term is carried out by a second order central difference scheme. The 
velocity at the elevation  , averaged over the generic computational cell ;i jI  

and indicated with  
;

/l
i j

r H  can be found by solving a system of equations with 

tridiagonal matrix formed by eqn. (14) in which all cross-derivatives are moved 
to the right hand side of the equation. 

     Once the values of  
;

/l
i j

r H  are known, the 1 2( , )s sBL  and 1 2 1 2( , , , , )H r r s sBD  

terms on the right hand side of eqns (11) and (12) are discretized using a second 
order central difference scheme at the cell centroids. Since the BL  and BD  terms 

need to be updated using 1 2 1 2, , , ,H r r s s  at the corresponding time step, an 
iteration is needed to achieve convergence, as suggested by Shi et al. [2]. 
Convective terms and terms related to the free surface elevation that define the 

1 2( , )r rL  and 1 2( , , )H r rD  terms on the right-hand side of eqns (11) and (12) are 

computed by a high-order finite volume WENO scheme, according to the 
procedure proposed by Gallerano et al. [14]. 
     A wet and dry technique is used to catch moving shoreline: if the water depth 
at the center of the computational cell is greater than a given threshold value the 
fluxes at the cell interfaces are computed using the wet bed solution of 
the Riemann problem, otherwise the fluxes at the cell interfaces are computed 
using the dry bed solution of the Riemann problem (Toro [15]). 

4 Results 

The capacity of the proposed model to correctly represent wave propagation, 
wave breaking and wave induced currents in curvilinear boundary conforming 
grids has been verified against test cases present in literature (Gallerano et al. 
[11]). In this section the model is applied to a real case regarding the simulation 
of the wave fields and wave induced nearshore currents in the coastal region 
opposite Pescara harbour (Italy). 
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4.1 Wave field and nearshore currents simulation in the Pescara 
coastal area 

The port of Pescara is located on the Italian Adriatic coast at the mouth of the 
homonymous river. It was established at the end of the nineteenth century as an 
inland port for the local fishing fleet; the inner basin of this port is located in the 
final stretch of the river Pescara. 
     In fig. 1A the plan view of the port areas without the outer port structures is 
outlined. Fig. 2 shows the bottom geometry of the coastal area in front the port of 
Pescara. In fig. 1B the plan view of the port areas with the outer port structures 
built in the 90s is outlined. 
     The area is affected by significant longshore currents. The incident wave 
motion interacts with both the waves reflected and diffracted by the port 
structures (wave-wave interactions) and with the river flow at the entrance of the 
inland port (wave-current interaction). 
 

 
 

Figure 1: Wave field and nearshore currents simulation in the Pescara coastal 
area. Plan view of the Pescara port: A) Absence of outer port 
structures. B) Presence of outer port structures. 

     Due to the complexity of the morphological and hydrodynamic phenomena 
that occur, wave fields and nearshore currents can be simulated only by means of 
wave-resolving models based on the combined solution of the Boussinesq 
equations for the representation of the motion equation from deep water up to 
just seaward of the surf zone and the nonlinear shallow water equations for the 
representation of the wave motion in the surf zones. 
     The contravariant formulation of the equations presented in this work, permits 
the numerical integration of the above mentioned equations on generalized 
curvilinear grids representing the complex morphology of the considered coastal 
area. The proposed model takes into account the complexity of the 
hydrodynamic phenomena taking place in the area in front of the port of Pescara 
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Figure 2: Wave field and nearshore currents simulation in the Pescara coastal 
area. Two-dimensional representation of bottom geometry of the 
coastal area in front of the Pescara harbour. 

and consisting in non-linear wave-wave interactions between the incoming wave 
motion and the waves reflected and diffracted around the structures, fully 
coupled wave-current interactions between the wave motion and the river current 
and coastal circulations induced by the wave breaking.    
     The equations at the basis of this model are discretized on a boundary 
conforming curvilinear grid. At the coastline, swash hydrodynamic phenomena 
were simulated using a procedure that involves a Riemann problem solver 
relative to a wet-dry front. In fig. 3A is shown the instantaneous surface 
elevation produced by waves of a deep water height of 1.5m with propagation 
direction oriented from North to South. From the figure analysis it can be seen 
how the wave the refraction, shoaling and reflection alter the wave field close to 
the coastline. Close to the river mouth, to its East, reflection of the incoming 
wave motion can be seen.  
     The interaction of the wave motion with the reflected waves and the river 
current, which is associated with a discharge of 300 m3/s, produces an increase 
of the wave height values of up to 1.98m.  
     In fig. 3B is shown the time and depth-averaged velocity field associated with 
the wave field presented in fig. 3A and with a river discharge of 300 m3/s. The 
aforesaid velocity fields show the presence of a longshore current flowing 
parallel with the coastline and a vortex to the West of the entrance of the inland 
port. 
     In fig. 4A is shown the instantaneous free surface elevation produced by 
waves of deep water height of 1.5m and the direction of propagation oriented 
from North to South in the presence of the offshore breakwater and the freight 
docks. From the analysis of fig. 4A the diffraction phenomena can also be seen 
around the ends of the offshore breakwater. This breakwater drastically reduces 
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Figure 3: Wave field and nearshore currents simulation in the Pescara coastal 
area. A) Wave field in absence of port structures. B) Nearshore 
currents in absence of port structures. Average velocity values in 
absence of port structures. River discharge: 300 m3/s. 

 
the wave height, modifies the wave front because of the wave diffraction and 
induces the reflection phenomena seaward of the breakwater. 
     In the area between the offshore breakwater and the entrance of the inland 
port the wave energy, dissipated by the presence of the structures, is 
considerably reduced: the wave height values are never higher than 0.2 m. 
     In fig. 4B is shown the time and depth-averaged velocity field produced by 
the wave field presented in fig. 4A and by a river discharge of 300 m3/s. 
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Figure 4: Wave field and nearshore currents simulation in the Pescara coastal 
area. A) Wave field in presence of port structures.  B) Nearshore 
currents in presence of port structures. Average velocity values in 
absence of port structures. River discharge: 300 m3/s. 

     From the analysis of fig. 4B the absence of the vortex can be noted which 
instead is present in the velocity field relative to the absence of the port 
structures shown in fig. 3B. From fig. 4B it can also be observed that the 
longshore current, induced by the breaking of the waves on the sandy beach, is 
channelled into the area between the mouth of the river Pescara and the outer 
port structures. The aforesaid current has the same order of magnitude as the one 
occurring in the absence of the outer port structures as shown in fig. 3B. 
     The analysis of hydrodynamics fields can provide useful information for a 
qualitative assessment around the way in which the break water and docks, 
changing substantially the wave field and the velocity field of the coastal current, 
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modify transport conditions and material storage in the area in front of the mouth 
of the river and induce a change in the seabed morphology.  

5 Conclusions 

In this paper a contravariant formulation of the fully non-linear Boussinesq 
equations has been proposed in order to simulate wave transformation 
phenomena, wave breaking and run-up in computational domains representing 
the complex morphology of real coastal regions. 
     The motion equations include the term related to the approximation to the 
second order of the vertical vorticity. A new Upwind Weighted Essentially Non-
Oscillatory scheme for the solution of the fully nonlinear Boussinesq equations 
on generalized curvilinear coordinate systems has been proposed. A high order 
shock capturing method in which an exact Riemann solver is involved has been 
used to intrinsically model the wave breaking. 
     The model has been applied to a real case regarding the simulation of wave 
fields and nearshore currents in the coastal region opposite Pescara harbour 
(Italy).  
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