
Journal of Computational and Applied Mathematics 233 (2010) 2322–2331

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Generating scenario trees: A parallel integrated
simulation–optimization approachI

Patrizia Beraldi ∗, Francesco De Simone, Antonio Violi
Financial Engineering Laboratory, Department of Electronics, Informatics and Systems, University of Calabria, Via P. Bucci Cubo 41/C, 87036 Rende, CS, Italy

a r t i c l e i n f o

Article history:
Received 10 August 2009
Received in revised form 24 September
2009

Keywords:
Scenario tree generation
Parallel algorithms
Simulation
Moment matching

a b s t r a c t

A crucial issue for addressing decision-making problems under uncertainty is the approx-
imate representation of multivariate stochastic processes in the form of scenario tree. This
paper proposes a scenario generation approach based on the idea of integrating simula-
tion and optimization techniques. In particular, simulation is used to generate outcomes
associated with the nodes of the scenario tree which, in turn, provide the input parame-
ters for an optimization model aimed at determining the scenarios’ probabilities matching
some prescribed targets. The approach relies on the moment-matching technique origi-
nally proposed in [K. Høyland, S.W.Wallace, Generating scenario trees for multistage deci-
sion problems, Manag. Sci. 47 (2001) 295–307] and further refined in [K. Høyland, M. Kaut,
S.W.Wallace, A heuristic for moment-matching scenario generation, Comput. Optim. Appl.
24 (2003) 169–185]. By taking advantage of the iterative nature of our approach, a paral-
lel implementation has been designed and extensively tested on financial data. Numerical
results show the efficiency of the parallel algorithm and the improvement in accuracy and
effectiveness.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Uncertainty is pervasive in everyday life and its representation in a form suitable for computation plays a crucial rule
in decision-making models. If uncertainty is represented in terms of continuous random variables, computation is difficult
to carry out since multidimensional integration is required. To overcome this drawback, approximation by a discrete set of
outcomes (scenarios) is typically considered.
In the context of financial applications, which provides the motivation for our contribution, scenarios are used either

directly or indirectly. In the former case, they are used, for example, to perform risk management, i.e. starting from a given
portfolio some riskmeasures (such as VaR, CVaR, etc.) can be computed by rating future performances of different securities.
Scenarios can be also used as the input parameters of stochastic programming models. In portfolio optimization, on the
basis of the price scenarios in input to the optimization model, the optimal asset allocation in terms of risk and rewards is
determined.
The literature on scenario generation is rich and different techniques have been proposed over the past decades.

They range from Sampling methods (e.g. importance sampling, bootstrapping), to Simulation (as the classical Brownian
motion and its variants belong to this class), from Statistical methods (such as principal component analysis technique,
regressionmethods,momentmatching) to othermethods (e.g. clustering approaches, neural networks) [18]. All themethods
mentioned above are compute intensive for both ‘‘space’’ and ‘‘time’’ requirements. Larger numbers of scenarios provide

I This research work was partially supported by EU FP6 IP Project ‘‘BEinGRID’’ and by MIUR, PRIN2007cod. 20073BZ5A5, 23.07.2007.
∗ Corresponding author.
E-mail address: beraldi@deis.unical.it (P. Beraldi).

0377-0427/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2009.10.017

http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:beraldi@deis.unical.it
http://dx.doi.org/10.1016/j.cam.2009.10.017

P. Beraldi et al. / Journal of Computational and Applied Mathematics 233 (2010) 2322–2331 2323

better approximations of the underlying stochastic process, thus, producing more robust and reliable solutions. This aspect
represents a very critical issue in a field as the financial one characterized by a high level of complexity and competition.
In effect, the worldwide crisis and several recent bankruptcies have emphasized even more the necessity of advanced and
sophisticatedmodels able to provide reliable solutions for strategic planning and risk control. The time component becomes
also a critical issue in the financial field especiallywhen scenarios are used for tactical portfolio allocation (or even for on-line
trading). For a volatile stock or bond, predictions based on current data typically dictate more confident trading decisions.
Parallel processing techniques provide an important tool to adequately copewith such computational intensive problem.

This paper moves a step forward this direction by proposing a new approach for scenario generation implemented on a
parallel computing system. The literature on parallel techniques for scenario generation is mainly centered on Monte Carlo
Simulation. Among the contributions,wemention [1],whereMonte Carlo simulation is employed to simulate price scenarios
used for performing riskmanagement. Themethodwepropose belongs to the class of statisticalmethods andmay be viewed
as a variant of themoment-matchingmethod originally proposed in [2]. The basis idea is to generate a scenario tree that best
fits some target statistical properties (typically the first 4moments and the correlationmatrix). Themethod does not require
a full knowledge of the underlying stochastic process and, thus, has a general validity. Targets may be defined either on the
basis of historical data analysis or user’s experience. If the first choice may be appropriate for long term strategic financial
planning, the second one would be advisable for a shorter time horizon. In fact, for tactical planning, typically referring to
the construction of an asset allocation mix following a given benchmark, the end-user may wish to express views on the
future deviating from the past. Under this respect, moment matching represents a very flexible and efficient approach.
The method relies on the solution of an optimization model where both the outcomes and probabilities associated with

each node of the tree are decision variables. This choice leads to a non-linear optimization problem of difficult solution even
for relative small instances. To overcome this drawback two main approaches have been proposed. The first one relies on
the sequential solution of smaller optimization problems associated with each node of the scenario tree. However, such an
approach lacks a direct control of the statistical properties defined over all the scenario tree. The second one is based on the
definition of a heuristic procedure that approximately solves the original problem. By means of different transformations,
starting from univariate distributions the joint ones are obtained by imposing the target correlation matching. For this
approach there is no guarantee on the approximation error. Furthermore, all the scenarios have the same probability of
occurrence. Our approach relies on the idea of solving a simplified version of the optimization model where the decision
variables are represented by the scenario probabilities. Instead, the outcomes associated with each node are generated by
a simulation procedure. This hybrid approach is similar to the one proposed in [3]. The main differences are related to
the technique used for scenario generation and to the formulation of the optimization model. Even though in principle
any scenario generation technique can serve the purpose of generating the outcomes associated with each node, we have
chosen to implement the heuristic proposed in [4] since it tries to match for construction the defined statistical properties.
In addition, our optimizationmodelworkswith the probability associatedwith scenarioswith a consequent reduction of the
size of an optimization model defined on the basis of node probabilities. We also observe that specific constraints bounding
the probabilities have been considered in our model in order to avoid the elimination of scenarios (those having probability
0) or the collapse of the entire tree on a singleton scenario (with probability 1).
The rest of the paper is organized as follows. Section 2 describes the proposed approach for scenario tree generation. The

method is well suitable for parallel implementation and Section 3 provides a description of the parallel approach. Section 4
is devoted to the computational experiments. First the test case is described and then numerical results are presented
and discussed by showing the performance of the parallel algorithms and the improvement in terms of solution quality.
Conclusions are reported in Section 5.

2. The integrated approach

Let ξ = {ξt}Tt=1 be a multivariate stochastic process defined on the probability space (Ω, F , P). In the case of discrete
distributions (real or approximated) ξ is typically represented by a scenario tree, where each node n at level t corresponds
to possible outcome of ξt . We denote by a(n) the unique predecessor of node n and we assume that it may have a certain
number of successors (children). Nodes at the horizon T are referred to as leaf nodes and are used to identify the scenarios.
More specifically, a scenario is a path from the root note (generally denoted by 0) to a leaf node and, thus, it represents
a joint realization of the uncertain problem parameters over all time steps t = 0, 1, . . . , T . We shall denote by S the
number of scenarios. With each scenario s is associated a probability of occurrence ps satisfying the fundamental probability
axioms [17].Wenote that the values of ps can be also expressed by the conditional probabilities associatedwith intermediate
nodes of the tree.
The Fig. 1 shows a binomial scenario tree for a time horizon of length 3. We observe that the tree topology (i.e. number

of nodes per stage) can vary according to problem specific requirements and could not be constant through the tree. One of
the strategies often adopted in strategic financial planning is to use an extensive branching at the beginning of time horizon
and a relatively poor branching at the last levels of the tree.
Besides the topology, the end-user may specify some statistical properties the scenario tree should have. As in [2] we

shall consider the first four moments and the correlation matrix. Such values can be either determined on the basis of the
historical data analysis or may reflect decision maker personal views on the future evolution of the random quantities.

2324 P. Beraldi et al. / Journal of Computational and Applied Mathematics 233 (2010) 2322–2331

Fig. 1. Scenario tree.

Our method can be regarded as an integrated approach where the simulation phase provides the input parameters for
an optimization model aimed at defining the scenarios probability matching the prescribed targets. The two main steps,
simulation and optimization, are repeated for a certain number of iterations.
The approach can be summarized according to the following scheme.

Step 0 (Initialization). Read input parameters referring to the tree topology and target statistical properties. Set the
maximum number of iterations Kmax, the iteration counter kiter = 0 and the incumbent value for optimal distance
from targets D̄ = ∞.

Step 1 (Termination). If kiter = Kmax, then Stop.
Step 2 (Simulation). Generate the outcomes for each node of the tree.
Step 3 (Optimization). Solve an optimization problem and determine D.
Step 4 (Test). Verify if D < D̄. In such a case update the incumbent value D̄ = D. Set kiter = kiter + 1 and go to Step 1.

In what follows we specify how the main steps, simulation and optimization, are performed.

2.1. Simulation

The generation of the random vector outcomes by a simulation approach represents the first key ingredient of the
proposed scenario tree generation method. Even if in principle any simulation technique could serve this purpose, the use
of methods guaranteeing good statistical properties would be preferable.
Our method implements the approach presented in [4] and inspired in [5–7]. The basic idea is to work with the marginal

distributions gaining the joint one bymeans of different transformations consistentwith the correlationmatrix. In particular,
the algorithm works as follows: for each component of the random process generate an univariate random variable from a
normal standard distribution. Compute the first 12 moments of each variable and apply a ‘‘cubic’’ transformation to create
variables with first moments close to target. Apply a ‘‘matrix’’ transformation to create multivariate random variables with
the specified correlation matrix. Algorithmic details can be found in [4]. Generally simulation is a highly valuable tool
for tackling practical problems, but it not sufficient by itself to yield the quality of outcomes desired. A step forward is
represented by an approach that joins simulation and optimization. Presentations of simulation–optimization techniques
may be found in the survey papers in [8,9].
In our case, the procedure just described is only approximate and there is no guarantee about the error level. The

optimization problem described in Section 2.2 aims at reducing the error manipulating probabilities of each scenario.

2.2. Optimization

Let us denote by I the size of the stochastic process and let xsit identify the simulated value of the random component i
at stage t under scenario s. On the basis of these values, we may determine the statistical properties that will enter in our
model. In particular, we shall consider the first four moments indexed by l (l = 1, . . . , 4) and the correlation defined as:

M̄ li =
S∑
s=1

psM lis i = 1, . . . , I, l = 1, 2, 3, 4 (1)

C̄ij =
S∑
s=1

psCijs i, j = 1, . . . , I (2)

where

P. Beraldi et al. / Journal of Computational and Applied Mathematics 233 (2010) 2322–2331 2325

M1is = µis =
1
T

T∑
t=1

xsit s = 1, . . . , S, i = 1, . . . I (3)

M2is = σ
2
is =

1
T

T∑
t=1

(xsit − µis)
2 s = 1, . . . , S, i = 1, . . . , I (4)

M3is = SKis =
1
Tσ 3is

T∑
t=1

(xsit − µ
2
is)
3 s = 1, . . . , S, i = 1, . . . , I (5)

M4is = Kis =
1
Tσ 4is

T∑
t=1

(xsit − µis)
4 s = 1, . . . , S, i = 1, . . . , I (6)

Cijs = σijs =
1
T

T∑
t=1

(xsit − µis) ∗ (x
s
jt − µjs)

σis ∗ σjs
s = 1, . . . , S, i, j = 1, . . . , I. (7)

With these definitions the mathematical model can be formulated as follows:

max
4∑
l=1

ωl

I∑
i=1

(M̄ li − M̃
l
i)
2
+ ω5

I∑
i=1

I∑
j=1

(C̄ij − C̃ij)2 (8)

s.t.
S∑
s=1

ps = 1 (9)

L ≤ ps ≤ U s = 1, . . . , S (10)

where M̃ li is the target value for moment l for component i and C̃ij is the target value for correlation between i and j.
The objective function (8) is defined as the weighted (by wl) sum of squared mean errors of multivariate distribution

moments with the respect to the target values. Condition (9) is required by the nature of decision variables ps, while the
constraint family (10) imposes lower and upper bounds on the probabilities values. These latter constraints, not explicitly
included in other moment-matching models, avoid that the probability associated with some scenarios may take the value
0 (i.e. the corresponding scenario is removed) or 1 (i.e. the entire scenario tree collapses in an unique path).
The previous model belongs to the class of non-linear programming problems. Despite model presented in [2], the

decision variables are associated with scenarios rather than nodes with a consequent reduction of the problem size.
Nevertheless, nodes probabilities can be determined by the scenario ones by applying the precedence relation and simply
recalling the relation between conditional and absolute probabilities.

3. The parallel implementation

The scenario tree generation method presented in Section 2 relies on the solution of several instances of the same
optimization problem defined starting from different input data determined thought the simulation step. As discussed in
the original contribution [4], even though the convergence of the heuristic approach cannot be demonstrated theoretically,
there is an empirical evidence that after a certain number of iterations the solution becomes stable.
The nature of the method suggests a straightforward parallelization strategy that, despite its simplicity, can lead to an

attractive reduction in the computational time and improvement of the accuracy level. The analysis of the procedure shows
that the main computational effort is required in Step 2 and Step 3 where the generation of the outcomes and the solution
of the corresponding optimization model (8)–(10) are performed.
The method is suitable for running on a parallel computing environment since the computational workload can be

efficiently split among available computing units. The parallel implementationwepropose has been designed by considering
a Master/Slave paradigm. The following software code reports a sketch of the parallel procedure.
The master process reads input data (i.e. tree’s topology, number of random variables and targets), splits the computa-

tionalworkload and distributes it among slaves. Themaster also participates in the execution of a given fraction ofworkload.
In order to guarantee a balanced distribution of the computational workload among the available computing units (N in-
cluding master) the following strategy has been implemented. Each computing node executes V = bKMax/Nc iterations
(rounded up to the nearest integer). Furthermore, an additional iteration is assigned if the difference KMax − V is greater
than 0. Once completed its workload, each computing node sends to all the other nodes only partial information related to
the achieved distance from targets. On the basis of received values and the computed ones, each computing node is able to
establish if it has processed the ‘‘best’’ scenario tree, in terms of minimum distance from targets. If this is the case, it saves
the whole scenario tree. In the case of multiple ‘‘best’’ trees, the processor with minimum order number is deputed to store
the solution. This strategy allows to reduce the data transmission among processors and preserves from high idle times. We

2326 P. Beraldi et al. / Journal of Computational and Applied Mathematics 233 (2010) 2322–2331

note that in the described parallelization strategy the synchronization overhead is limited, thus good performances can be
obtained also on low-budget parallel machines without shared memory.

/∗ header f i l e s ∗ /
#include <mpi . h>
#include "MM_Utility . h"
#include "newmat10/newmat . h"
#include "newmat10/newmatap . h"
#include "newmat10/newmatio . h"
. . .
#define MASTER 0
. . .
int main(int argc , char∗ argv []) {

/∗ var i ab l e dec la ra t i on ∗ /
int sons ;
int l eve l s ;
int random_variables ;
int i t e ra t ions , my_iterations ;
int numproc , myid , best_id ;
double my_best_distance , my_distance , best_distance ;
Matrix Scenario_Tree ;
Matrix Probab i l i ty ;
Matrix My_Best_Scenario_Tree ;
Matrix My_Best_Probability ;
int l en_spec i f i ca t ions =compute_len (random_variables) ;
double ∗vec tor_spec i f i ca t ions = new double [l en_spec i f i ca t ions] ;
. . .
/∗ MPI i n i t c a l l e d (f i r s t) by a l l p roces ses ∗ /
MPI_Init (&argc , &argv) ;
MPI_Comm_size(MPI_COMM_WORLD, &numproc) ;
MPI_Comm_rank(MPI_COMM_WORLD, &myid) ;

/∗ Th i s next statement i s only ca r r i ed out by the MASTER process .
Th i s process reads s p e c i f i c a t i o n s in input and put i t s in a vec tor ∗ /
i f (myid=MASTER) {

read_spec i f i ca t ions (vector_spec i f i ca t ions , sons ,
levels , random_variables , i t e r a t i ons) ;

}

/∗ MPI_Bcast i s c a l l e d by a l l p roces ses . Master sends to other proces ses
a vec tor with the s p e c i f i c s o f problems ∗ /
MPI_Bcast (vector_spec i f i ca t ions , l en_spec i f i ca t ions ,

MPI_DOUBLE , MASTER , MPI_COMM_WORLD) ;

/∗ Each process compute i t e r a t i o n s to perform ∗ /
my_iterations= load_balancing (myid , i t e r a t i ons) ;

/∗ Each process s e t to one mi l l i on ∗ /
my_best_distance=1000000;

/∗ Each process s t a r t s to perform scenar io generat ion procedures ∗ /
for (int i t e r =0; i t e r < my_iterations ; i t e r ++){

/∗ Simulat ion phase ∗ /
Scenario_Tree = Simulation (vec tor_spec i f i ca t ions) ;

/∗ Optimizat ion phase ∗ /
Probab i l i ty = Optimization (vector_spec i f i ca t ions , Scenario_Tree) ;

/∗ Compute d i s tance ∗ /
my_distance = compute_distance (Scenario_Tree , Probab i l i ty) ;

/∗ Compare t h i s d i s tance with the bes t one ∗ /
i f (my_distance < my_best_distance) {

my_best_distance = my_distance ;
My_Best_Scenario_Tree = Scenario_Tree ;
My_Best_Probability = Probab i l i ty ;

}
}

double ∗Al l_d is tances = new double [numproc] ;

P. Beraldi et al. / Journal of Computational and Applied Mathematics 233 (2010) 2322–2331 2327

/∗ MPI_Al lgather i s c a l l e d by a l l p roces ses . Each sent i t s r e s u l t
to others . ∗ /

MPI_Allgather (&my_best_distance , 1 , MPI_double , Al l_distances ,
numproc , MPI_DOUBLE , MPI_COMM_WORLD) ;

/∗ Compute Best Distance ∗ /
best_id = compute_best_id (Al l_d is tances) ;

/∗ The process that has bes t r e s u l t wri te in output i t s r e s u l t ∗ /
i f (myid=best_id) {

wri te_resul t (my_best_distance , My_Best_Scenario_Tree ,
My_Best_Probability) ;

}

MPI_Finalize () ;
return 0;

}

4. Computational experiments

In this section we report on the computational experiments carried out to evaluate the performance of the proposed
parallel scenario generation approach. The algorithm has been implemented in C/C++ and uses several scientific libraries
to perform the operations required both in the simulation and optimization phase. In particular, the GNU Scientific Library
[10] has been used to solve the system of non-linear equations which is at the core of cubic transformation. The NEWMAT
[11] library has been used to perform the Cholesky decomposition in thematrix transformation. Finally, the NAG [12] library
has been employed to solve the non-linear problems in the optimization phase.
The parallel code has been implemented by using the MPI paradigm [13,14]. In particular, we have adopted the MPICH2

[15] implementation which provides a library of C and C++ functions for easily developing parallel programs. All test have
been carried out on aNEC TX7with 32 CPUs Itanium II @1000MHz and 64GBmemory, running Suse Linux Enterprise Server.
In what follows, we first introduce the testing environment and then we present and analyze numerical results.

4.1. Test case

We have considered the generation of scenario trees for the returns of financial indices listed on different markets.
Historical data are represented by monthly returns for the time horizon from January 1999 to October 2006. We have
considered different tree topologies, all with the same time horizon of five months with monthly steps. Different tests have
been generated by varying the number of branches for node and the size of the random process.
In particular, we have considered symmetric trees with a number of branches for node equal to 3, 4, 5, 6 and 7, thus resulting
in 243, 1024, 3125, 7776, 16807 scenarios, respectively. Target moments have been obtained from historical data analysis,
even if in general end-user may wish to specify these values according to his/her own perspective. Weights associated
with each target in the objective function are specified in Table 1. Other choices denoting different moment priority can be
effective as well, according to user requirements.
In the optimization phase, in order to avoid degenerative situations, both lower and upper bounds on the scenario

probabilities have to be fixed. In particular, starting from a value r = 1/S, upper and lower bounds have been obtained
as U = r ×

√
S and L = r × 1/

√
S, respectively.

The user can also specify the maximum number of iterations to perform, according with tree dimension and desired
accuracy level. Aswewill show later in this section, it is empirically evident that after a certain number of iterations solutions
seem to converge.

4.2. Numerical results

A first set of experiments has been carried out to evaluate the performance of the sequential version of the scenario
generation approach. Table 2 shows the average computational time per iteration (defined as the sum of the time required
by both Step 2 and Step 3) for the different test cases defined as function of the size of the random process and scenarios
number.
The analysis of the results shows that the computational time mostly depends on the number of scenarios and quite

poorly on the size of the random vector. This is mainly due to the higher complexity of the optimization phase with respect
to the simulation one. In fact, in the optimization problem the number of the decision variables is related to the number
of scenarios. Nevertheless, higher number of scenarios guarantees, as shown later in the section, a better quality of the
solutions. It should be emphasized that the whole computing time also depends on the number of iterations performed. The

2328 P. Beraldi et al. / Journal of Computational and Applied Mathematics 233 (2010) 2322–2331

Table 1
Weights’ values.

Moment Weight value

Mean 0.22
Std. Dev. 0.22
Kurtosis 0.22
Skewness 0.12
Correlation 0.22

Table 2
Average solution time per iteration (s).

Size Scenarios
243 1024 3125 7776 16807

5 0.23 3.24 19.27 206.48 12127.21
10 0.28 3.36 20.20 231.71 12544.84
20 0.30 3.47 20.94 245.27 12901.43

Fig. 2. Speed-up of the scenario generation approach.

choice of this latter value is up to the end-user and it is typically performed by considering the trade-off between quality
and computing burden. However, the high computing time clearly underlines the necessity to take advantage of parallel
systems to generate accurate solutions. Fig. 2 shows the speed-up values obtained for the test cases with random size 10, as
function of the number of processors.
As evident, speed-up values are very close to the linear one for all the test cases. As regards the efficiency, the values

obtained are very close to 1 as shown in Fig. 3. Similar results have been obtained for all the other test problems.
Another set of experiments has been carried out to empirically test the convergence of the proposed procedure. In

particular, we have considered three test problems defined by a random vector size of 10 and a number of scenarios of
1024, 7776 and 16807, respectively. For each test problem, we have run the whole procedure several times. In order to
normalize the distance from targets, we have used an error measured as:

ε ≡

√√√√√ D̄∑
i
∑
l
(M̃ li)2

.

Fig. 4 shows the results.
As we can see, for each test case the error decays very fast and becomes stationary in few hundred iterations. More-

over, the figure confirms that larger scenario trees can better match statistical properties. We also note that the proposed
procedure is robust in that for all the considered test problems the error is less than 6.5%.

P. Beraldi et al. / Journal of Computational and Applied Mathematics 233 (2010) 2322–2331 2329

Fig. 3. Efficiency of the scenario generation approach.

Fig. 4. Convergence of solutions for different numbers of iterations.

Other experiments have been carried out to validate the effectiveness of the proposed scenario generation procedure. To
this aim we have performed a backtesting analysis by comparing the simulated evolution of a portfolio equally distributed
among 5 indices with the evolution obtained by considering the real data. The simulated scenarios refer to the time horizon
fromOctober 2005 toMarch 2006, for which real data are available. Fig. 5 shows simulated evolutions and the real evolution
for a different number of scenarios. It is worthwhile noting that generated trees represent well the real evolution and, as
excepted, the higher the scenario number the better the effectiveness.
As mentioned above, in the financial field scenarios are generally used to perform risk management. One of the most

widely used measures is represented by the Conditional Value at Risk (CVaR), which is known to be a more consistent risk
measure than Value at Risk (VaR) (see, for example, [16]). For a given confidence level α, the main difference between CVaR
and VaR consists in that VaR concerns about the maximum loss that can be observed with probability α, whereas CVaR
concerns about the expectations of losses exceeding VaR. Therefore, CVaR can provide more extensive benefits information
than VaR.
We have evaluated the CVaR at different confidence level α for a portfolio with of 5 indices with an increasing number

of scenarios. In particular, for each test we have computed the average and the standard deviation of the CVaR values on 25

2330 P. Beraldi et al. / Journal of Computational and Applied Mathematics 233 (2010) 2322–2331

243 Scenariosx 104

3.3

3.2

3.1

3

2.9

2.8

2.7

2.6

2.5

3.3

3.2

3.1

3

2.9

2.8

2.7

2.6

2.4

2.3

2.5

1 2 3 4 5 6

1024 Scenariosx 104

3.2

3.1

3

2.9

2.8

2.7

2.6

2.5

2.4
1 2 3 4 5 6

7776 Scenariosx 104

1 2 3 4 5 6

3.8

3.6

3.4

3.2

3

2.8

2.6

2.4

2.2

16807 Scenariosx 104

1 2 3 4 5 6

Fig. 5. Scenario tree vs. real evolution.

Table 3
Average CVaR values (%).

Scenarios α = 99% α = 95%

243 1.89 1.32
1024 1.76 1.24
3125 2.23 1.96
7776 2.10 1.72
16807 2.57 1.83

different scenario trees. Table 3 reports the average CVaR values for two different confidence levels, whereas the relative
error is depicted in Fig. 6.
As evident, the error decreases as the scenario number is increased. This confirms that the proposed approach provides

accurate solutions and represents a helpful tool for risk evaluation and control.

5. Conclusions

In this paper we propose a scenario generation approach based on the idea of integrating simulation and optimization
techniques. In particular, simulation is used to generate outcomes associated with the nodes of the scenario tree which, in
turn, provide the input parameters for an optimization model aimed at determining the scenarios’ probabilities matching
some predefined targets. A parallel implementation of the method is provided and extensively tested on financial data. The
numerical results have shown the efficiency of the parallel implementation and the high quality of generated scenarios in
terms of accuracy and effectiveness.

P. Beraldi et al. / Journal of Computational and Applied Mathematics 233 (2010) 2322–2331 2331

Fig. 6. Relative error in CVaR evaluation.

References

[1] R. Moreno-Vozmediano, K. Nadiminti, S. Venugopal, A.B. Alonso-Conde, H. Gibbins, R. Buyya, Portfolio and investment risk analysis on global grids,
J. Comput. System Sci. 73 (2007) 1164–1175.

[2] K. Høyland, S.W. Wallace, Generating scenario trees for multistage decision problems, Manage. Sci. 47 (2001) 295–307.
[3] N. Gülpinar, B. Rustem, R. Settergren, Simulation and optimization approaches to scenario tree generation, J. Econom. Dynam. Control 28 (2004)
1291–1315.

[4] K. Høyland, M. Kaut, S.W. Wallace, A heuristic for moment-matching scenario generation, Comput. Optim. Appl. 24 (2003) 169–185.
[5] A.I. Fleishman, A method for simulating nonnormal distributions, Psychometrika 43 (1978) 521–532.
[6] P.M. Lurie, M.S. Goldberg, An approximate method for sampling correlated random variables from partially-specified distributions, Manage. Sci. 44
(1998) 203–218.

[7] C.D. Vale, V.A. Maurelli, Simulating multivariate nonnormal distributions, Psychometrika 48 (1983) 465–471.
[8] S. Andradttir, Simulation optimization, in: J. Banks (Ed.), Handbook of Simulation: Principles, Methodology, Advances, Applications, and Practice, John
Wiley & Sons, New York, 1998 (Chapter 9).

[9] M.C. Fu, Optimization for simulation: Theory vs. practice, INFORMS J. Comput. 14 (3) (2002) 192–215.
[10] http://www.gnu.org/software/gsl/.
[11] http://www.robertnz.net/nm10.htm.
[12] http://www.nag.co.uk.
[13] W. Gropp, E. Lusk, A. Skjellum, Using MPI: Portable Parallel Programming with the Message-Passing Interface, 2nd ed., The MIT Press, Cambridge,

1999.
[14] M.J. Quinn, Parallel Programming in C with MPI and OpenMP, McGraw-Hill, New York, 2003.
[15] http://www.mcs.anl.gov/research/projects/mpich2staging/balaji/mpich2/index.php.
[16] P. Artzner, F. Delbaen, J.M. Eber, D. Heath, Conherent measures of risk, Math. Finance 9 (1999) 203–228.
[17] J. Dupacová, G. Consigli, S.W. Wallace, Scenarios for multistage stochastic programs, Ann. Oper. Res. 100 (2000) 25–53.
[18] S. Mitra, Scenario Generation for Stochastic Programming, White Paper, Optirisk Syst., UK, 2006.

http://www.gnu.org/software/gsl/
http://www.robertnz.net/nm10.htm
http://www.nag.co.uk
http://www.mcs.anl.gov/research/projects/mpich2staging/balaji/mpich2/index.php

	Generating scenario trees: A parallel integrated simulation--optimization approach
	Introduction
	The integrated approach
	Simulation
	Optimization

	The parallel implementation
	Computational experiments
	Test case
	Numerical results

	Conclusions
	References

