447 research outputs found

    Phosphorylation of human plasminogen activators and plasminogen

    Get PDF
    AbstractPlasminogen (PG), urokinase-type plasminogen activator (u-PA) and tissue-type PA (t-PA) are the main molecules involved in fibrinolysis and in many other physiological and pathological processes. In the present study we report that human t-PA, purified from human melanoma cells, and PG, purified from human plasma, both contain P-Tyr residues, as revealed by immunoblotting analyses with monoclonal anti-P-Tyr antibodies. In addition HPLC amino acid analysis of acid-hydrolyzed t-PA, PG and u-PA, shows that: (i)P-Ser and P-Tyr residues are present in t-PA; (ii)P-Thr and P-Tyr are present in PG; (iii) P-Ser, P-Thr and P-Tyr are present in u-PA. The utilization of monoclonal anti-P-Ser and anti-P-Thr antibodies in immunoblotting experiments has confirmed these data which indicate that phosphorylation is a common feature of PAs and of PG

    Cyclic Plasticity and Low Cycle Fatigue of an AISI 316L Stainless Steel: Experimental Evaluation of Material Parameters for Durability Design

    Get PDF
    AISI 316L stainless steels are widely employed in applications where durability is crucial. For this reason, an accurate prediction of its behaviour is of paramount importance. In this work, the spotlight is on the cyclic response and low-cycle fatigue performance of this material, at room temperature. Particularly, the first aim of this work is to experimentally test this material and use the results as input to calibrate the parameters involved in a kinematic and isotropic nonlinear plasticity model (Chaboche and Voce). This procedure is conducted through a newly developed calibration procedure to minimise the parameter estimates errors. Experimental data are eventually used also to estimate the strain–life curve, namely the Manson–Coffin curve representing the 50% failure probability and, afterwards, the design strain–life curves (at 5% failure probability) obtained by four statistical methods (i.e., deterministic, “Equivalent Prediction Interval”, univariate tolerance interval, Owen’s tolerance interval for regression). Besides the characterisation of the AISI 316L stainless steel, the statistical methodology presented in this work appears to be an efficient tool for engineers dealing with durability problems as it allows one to select fatigue strength curves at various failure probabilities depending on the sought safety level

    Transparent conductive oxide-based architectures for the electrical modulation of the optical response: A spectroscopic ellipsometry study

    Get PDF
    Transparent conductive oxides are a class of materials that combine high optical transparency with high electrical conductivity. This property makes them uniquely appealing as transparent conductive electrodes in solar cells and interesting for optoelectronic and infrared-plasmonic applications. One of the new challenges that researchers and engineers are facing is merging optical and electrical control in a single device for developing next-generation photovoltaic, optoelectronic devices and energy-efficient solid-state lighting. In this work, the authors investigated the possible variations in the dielectric properties of aluminum-doped ZnO (AZO) upon gating by means of spectroscopic ellipsometry (SE). The authors investigated the electrical-bias-dependent optical response of thin AZO films fabricated by magnetron sputtering within a parallel-plane capacitor configuration. The authors address the possibility to control their optical and electric performances by applying bias, monitoring the effect of charge injection/depletion in the AZO layer by means of in operando SE versus applied gate voltage

    STAble: A novel approach to de novo assembly of RNA-seq data and its application in a metabolic model network based metatranscriptomic workflow

    Get PDF
    Background: De novo assembly of RNA-seq data allows the study of transcriptome in absence of a reference genome either if data is obtained from a single organism or from a mixed sample as in metatranscriptomics studies. Given the high number of sequences obtained from NGS approaches, a critical step in any analysis workflow is the assembly of reads to reconstruct transcripts thus reducing the complexity of the analysis. Despite many available tools show a good sensitivity, there is a high percentage of false positives due to the high number of assemblies considered and it is likely that the high frequency of false positive is underestimated by currently used benchmarks. The reconstruction of not existing transcripts may false the biological interpretation of results as - for example - may overestimate the identification of "novel" transcripts. Moreover, benchmarks performed are usually based on RNA-seq data from annotated genomes and assembled transcripts are compared to annotations and genomes to identify putative good and wrong reconstructions, but these tests alone may lead to accept a particular type of false positive as true, as better described below. Results: Here we present a novel methodology of de novo assembly, implemented in a software named STAble (Short-reads Transcriptome Assembler). The novel concept of this assembler is that the whole reads are used to determine possible alignments instead of using smaller k-mers, with the aim of reducing the number of chimeras produced. Furthermore, we applied a new set of benchmarks based on simulated data to better define the performance of assembly method and carefully identifying true reconstructions. STAble was also used to build a prototype workflow to analyse metatranscriptomics data in connection to a steady state metabolic modelling algorithm. This algorithm was used to produce high quality metabolic interpretations of small gene expression sets obtained from already published RNA-seq data that we assembled with STAble. Conclusions: The presented results, albeit preliminary, clearly suggest that with this approach is possible to identify informative reactions not directly revealed by raw transcriptomic data

    A relevant long-term impact of the circulation of a potentially contaminated vaccine on the distribution of scrapie in Italy. Results from a retrospective cohort study

    Get PDF
    A sudden increase in the incidence of scrapie in Italy in 1997 was subsequently linked to the use of a potentially infected vaccine against contagious agalactia. The relative risk for the exposed farms ranged between 6 and 40. The aim of this study was to assess the long-term impact of exposure to the potentially scrapie-contaminated vaccine on the Italian classical scrapie epidemic. We carried out a retrospective cohort study, fitting mixed-effects Poisson regression models, dividing national geographic areas into exposure categories on the basis of the vaccine circulation levels. We took into account the sensitivity of the surveillance system applied in the different areas. The population attributable fraction (PAF) was used to assess the impact on the total population of farms associated with the effect of circulation of the vaccine. The provinces where the vaccine was more often sold were noted to have a higher level of disease when compared to those provinces where the vaccine was sold less often (incidence rate ratio [IRR]: 2.7; 95% confidence interval [CI]: 1.1-6.5). The population attributable fraction was high (68.4%). Standardization techniques allowed to account for the potential of geographical variability in the sensitivity of the Italian surveillance system. Although the number of the directly exposed farms was limited, an important long-term impact of the vaccine circulation could be quantified in terms of secondary outbreaks likely due to the exchange of animals from directly exposed flocks

    Viscosity, Boson Peak and Elastic Moduli in the Na2O-SiO2 System

    Get PDF
    The temperature and chemical dependence of the melt viscosity are ubiquitous in the model development of the volcanic dynamics, as well as in the glass production and design. We focussed on the yet-explored relationship between the bulk and shear moduli ratio and boson peak with the melt fragility of their parental glasses. Here, we explored the extension of the observed trend by testing the conventional binary system Na2O-SiO2, thus providing new evidence supporting the link between the flow of melts and supercooled liquids and the vibrational dynamics of their parental glasses. This was accomplished by integrating new low-frequency Raman measurements and integrating data from the literature on Brillouin light scattering and viscometry. This approach allows us to feed the MYEGA equation with reliable input parameters to quantitatively predict the viscosity of the Na2O-SiO2 system from the liquid up to the glass transition

    Unveiling the Thermoelectric Performances of Zn1−xFexSe Nanoparticles Prepared by the Hydrothermal Method

    Get PDF
    Fe2+-doped ZnSe nanoparticles, with varying concentrations of Fe2+ dopants, were prepared by the hydrothermal method and investigated using a multi-technique approach exploiting scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman spectroscopy, as well as measurement of the electrical transport properties and Seebeck coefficient (S). The doped nanoparticles appeared as variable-sized agglomerates on nanocrystallites upon SEM investigation for any doping level. Combined XRD and Raman analyses revealed the occurrence of a cubic structure in the investigated samples. Electric and thermoelectric (TE) transport investigations showed an increase in TE performance with an increase in Fe atom concentrations, which resulted in an enhancement of the power factors from 13 ”Wm−1K−2 to 120 ”Wm−1K−2 at room temperature. The results were also dependent on the operating temperature. The maximum power factor of 9 × 10−3 Wm−1K−2 was achieved at 150 °C for the highest explored doping value. The possible applications of these findings were discussed
    • 

    corecore