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Abstract: The temperature and chemical dependence of the melt viscosity are ubiquitous in the
model development of the volcanic dynamics, as well as in the glass production and design. We
focussed on the yet-explored relationship between the bulk and shear moduli ratio and boson peak
with the melt fragility of their parental glasses. Here, we explored the extension of the observed
trend by testing the conventional binary system Na2O-SiO2, thus providing new evidence supporting
the link between the flow of melts and supercooled liquids and the vibrational dynamics of their
parental glasses. This was accomplished by integrating new low-frequency Raman measurements
and integrating data from the literature on Brillouin light scattering and viscometry. This approach
allows us to feed the MYEGA equation with reliable input parameters to quantitatively predict the
viscosity of the Na2O-SiO2 system from the liquid up to the glass transition.

Keywords: viscosity; fragility; glass transition; boson peak; elastic moduli

1. Introduction

The shear viscosity η of glass-forming liquids is one of the central physical quantities
for a vast set of disciplines ranging from geology to material science. Indeed, its temperature
dependence controls the viscoelastic response of the material to deformations [1] and
triggers several microscopic processes such as melt phase separation, bubbles clustering
and crystals nucleation and growth. Broadly speaking, the viscosity influences the flow
dynamics [2] and this represents one of the core issues of both volcanology [3,4] and glass
design and production [5].

The dynamics, course and style of volcanic eruptions are strongly influenced by a
complex interaction between physicochemical characteristics of magmas and processes
occurring at different time and length scales [6,7]. Being magma multi-phase systems with
a dominant liquid phase, the knowledge of viscosity is central in any modern modeling of
volcanologically relevant processes [8,9]. Furthermore, the liquid viscosity range where
supercooled liquids can be molded spans only a few orders of magnitude as compared
to the huge increases of η from the liquid to the glass transition value. This impacts the
qualities of melt workability and glass meltability which are, in turn, crucial properties
for achieving a balance between the design and operation of glass melting and forming
facilities. Actually, this has been known since the Middle Ages by Italian glassmakers who
classified glass-former liquids as “lunghi” (long) and “corti” (fast) to distinguish the time
needed to cross that region [10]. This ancient definition is currently effectively described
by the fragility m. Consequently, a thorough study and microscopic modeling of the
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temperature behavior of viscosity between the melting and the glass transition temperature
is a substantial step toward “better glasses” [11].

The prototypical system xNa2O-−(1 − x)SiO2 represents probably the most investi-
gated proxy in material and geosciences. Experimental and theoretical studies cover both
the liquid [12,13] and the glassy state [14,15]. Although widely different in composition
from either natural or technological systems, this binary glass former potentially mimics
most of the behavior of the soda–lime silicate systems and lava analogs of terrestrial and ex-
traterrestrial volcanism [16–18]. Basically, the silica network is progressively depolymerized
and compensated by the occurrence of non-bridging oxygens as the sodium concentration
increases. In turn, the glass structure is softened and the glass transition temperature (Tg) is
lowered [19]. Hence, the structure evolves, from a stressed rigid to a floppy structure [20].
This process significantly boosts the macroscopic dynamics of the system and directly
governs the temperature T evolution of the viscosity as Tg is approached. This can be
quantified by considering the fragility defined as:

m =
∂log10 η

∂Tg/T

∣∣∣∣
T=Tg

(1)

This relation has been visualized for several systems in the well-known Angell’s
plot [21] where the different glass-forming liquids can be classified according to their
fragility. In particular, “strong” or “fragile” melts show a quasi-/purely- or a non-Arrhenius
dependence, respectively [21].

Several decades of work on sodium silicate glasses have produced a huge database
of several physical properties, as well as a debate on the explanation of glass and melt
properties [22,23]. Here, we add a further piece of information by providing a deepening
of the T-dependence of the viscosity evolution as a function of the Na2O concentration and
its relation with the low-frequency (low-ω) region of the Raman spectra dominated by the
so-called boson peak (BP). To do so, we exploit the same approach described by Cassetta
et al., 2021 [24] and we focus on the correlation between m and the vibrational properties.
The T behavior of the viscosity is obtained using the Mauro–Yue–Ellison–Gupta–Allan
(MYEGA) equation [25]. Furthermore, the glass transition temperature of the high-silica
endmember was measured and used to determine externally the predictions of the system
using differential scanning calorimetry (DSC). Our results shed some new light on the
mechanisms that lead to the evolution of viscoelastic properties in the supercooled liquid,
providing a reference for future modeling of the macroscopic behavior of the glass-forming
liquid.

2. Materials and Methods

We synthesized 5 binary sodium silicate glasses, by melting a binary mixture of SiO2
and Na2CO3 powders (Sigma-Aldrich, St. Louis, MO, USA), after having milled together in
agate mortar and mixed in bottles. The powders were melted in Pt-crucibles at 1780 K and
quenched in air, thus experiencing the same cooling rate. The glass samples were annealed
at their Tg for 2 h and cooled to ambient T at 10 K min−1.

Samples are named using the prefix “NS”, where N stands for soda (Na2O), S for silica
(SiO2), whilst the number is the mol.% of Na2O in the mixture, i.e., NS20 represents the
mixture SiO2 80 mol.%–Na2O 20 mol.%.

The real density of the compounds was measured using He-pycnometry using an
Ultrapyc5000 from Anton Paar®. All values reported in this work result from the average
of 99 runs, performed at 20 ◦C in pulse mode (10 pulses) at the pressure of 10 psi.

The glass chemistry was determined at the Institute of Mineralogy, Leibniz University
Hannover using an electron microprobe (JEOL JXA-iHP200F Field Emission Electron Probe
Microanalyzer, Peabody, MA, USA). Compositions are summarized in Table S1 of the
Supplementary Information (SI). Beam conditions on unknowns and calibration standards
were 15 kV and 8 nA and defocused to 30 µm spot size. Si (Kα) and Na (Kα) were acquired
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using TAP and TAPL crystals, respectively. At these conditions, well-known sodium loss
(checked by Na counts for every 200 ms) was not observed within 10 s (checked for glasses).
Measurement peak and background time were 10 and 5 s for SiO2 and 5 and 2 s for Na2O,
respectively. Element calibrations were conducted using in-house basaltic glass standards
whose compositions were verified against certified MPI-DING reference glasses [26]. Two
additional Na2O-rich albite and jadeite glasses were used as unknown references (in
this case, Al2O3 was also included in measurements with conditions similar to those for
SiO2, 10 s/5 s, TAP(Kα)). Raman spectra were acquired with a micro-Raman spectrometer
(Horiba Jobin-Yvon model T-64000, Villeneuve d’Ascq, France) having three holographic
gratings (1800 lines/mm), configured in double subtractive/single mode, coupled with a
CCD detector with 1024 × 256 pixels, and cooled by liquid nitrogen. Raman measurements
were performed in backscattering geometry with the possibility of polarizing the laser
beam for both parallel (HH) and crossed (HV) modes, which is provided by a combined
Ar-Kr ion gas laser set at 514.5 nm (Spectra-Physics, Satellite 2018 RM, Mountain View, CA,
USA). See refs. [27,28] for details.

A simultaneous thermogravimetric and DSC analyzer (TGA-DSC 3+, Mettler Toledo,
Madison, WI, USA) was used to conduct the thermal analysis as described in refs. [29,30].
To remove the thermal history of the sample, a polished glass chip (about 10 mg) was put
in an alumina crucible and heated from 300 to 1070 K at 20 K min−1 under air flowing at a
rate of 100 mL min−1. After cooling to ambient temperature at a rate of 10 K min−1, the
temperature was raised at the same rate to 1070 K. Tg was subsequently determined as the
point where the tangent to the heat flow curve in the glassy state and that to the inflection
point in the glass transition interval coincide.

Each glass was tested to be homogeneous at the microscopic scale by acquiring 20 HH
Raman spectra in 20 different points using a 100× objective and checked to be consistent
with the expected composition by comparing with those in the literature [31–33]. Spectra
are reported in Figure S1 in the Supplementary Information (SI).

High- and low-temperature viscosity data were collected for the xNa2O − (1 − x)SiO2
from data from the literature: for NS15 from refs. [12,13,34,35] and ref. [22], data of samples
B and C, for NS20 from refs. [12,13,22,34–36], for NS25 from refs. [12,13,35,37], for NS30
from refs. [13,35], for NS45 from ref. [35], and for sample NS10 we only collected low
viscosity data from refs. [13,35]. The sound velocities of each composition were retrieved
by interpolating the data from ref. [38]. The non-Arrhenius trends of each composition
were fit to the MYEGA equation to the viscosity data from the literature and by setting
η∞ = 10−2.93 Pa s, whilst the extrapolated values of m and Tg are reported in Table 1, as well
as the longitudinal and transverse sound velocities vl and vt.

Table 1. Raman-derived boson peak position ωBP, density measured using He-pycnometry ρ, glass
transition temperature Tg, and fragility m obtained by fitting the viscosity data of the same com-
position found in the literature to the MYEGA equation. The longitudinal and transverse sound
velocities vl and vt are reported together with the K/G. Data are from the references indicated in the
last column. The uncertainties on the parameters are reported between brackets and is the error on
the least significant digit of the result.

ωBP ρ Tg m vl vt K/G Reference

(cm−1) (g cm−3) (K) (m s−1) (m s−1)

SiO2 48.5(5) 2.20(2) 1427(8) 24.0(4) 5972 3769 1.18 [24]
NS10 49.7(6) 2.28(4) - - 5654 3531 1.23 (η) [13,34,35] (vl, vt)
NS15 51.0(1) 2.34(4) 779.9(5) 26.6(1) 5559 3421 1.31 (η) [12,13,34–36], (vl, vt) [37,38]
NS20 60.1(7) 2.39(2) 750.2(7) 29.8(2) 5493 3330 1.39 (η) [12,13,22,34–36], (vl, vt) [38]
NS25 60.0(7) 2.44(3) 731.0(1) 29.9(3) 5457 3257 1.47 (η) [12,13,35,37], (vl, vt) [38]
NS30 63.8(8) 2.47(2) 720.0(1) 30.8(2) 5450 3204 1.56 (η) [13,35], (vl, vt) [38]
NS45 71.0(1) 2.58(2) 679.7(5) 36.4(2) 5604 3154 1.82 (η) [35], (vl, vt) [38]
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3. Results and Discussions

The glass densities (ρ) range from the typical value of silica glass (2.20 g cm−3) to
2.58 g cm−3 for the sodic endmember NS45. Results are reported in Table 1, showing a
good agreement with those of ref. [38]. Figure S1 shows the Raman spectra of the sample
indicated in Table 1, which exhibit the peculiar band shape of SiO2 and the sodium silicate
glass systems [28,31,33,39,40]. Indeed, when sodium is added to the silica matrix, the R
band dramatically decreases and a new band appears, namely the Rc band. It turns out
relatively narrow and it gradually strengthens (both in frequency and intensity) as the
sodium concentration increases. This extra band accompanying the R, D1, and D2 bands in
alkali silicates is commonly detected even though its origin is still a matter of debate [39].
The low-ω region of the HV spectra Figure 1a–g is characterized by the strong appearance
of the BP between 20 and 200 cm−1. Below this spectral region, i.e., for frequencies
ω . 20 cm−1, the spectrum generally shows an increase in intensity due to the quasi-elastic
scattering (QES), which does not overlap with the BP, even if in silica-rich samples, is very
shortly extended below the low-ω tail. Following these observations, in order to minimize
the effect of the 460 cm−1 band superimposition [41,42], the whole evaluation of the BP is
based on the HV spectra [43].
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Figure 1. Reduced low-ω HV Raman spectra of binary sodium–silicate glasses (a–g). The red line is

an example of the log-normal function defined as I(ω) ∝ exp
{
−[ ln(ω/ωBP)]

2/2σ2
}

, used for the
fitting procedure. Here, σ is the width of the BP.

In a Raman scattering experiment on a glass [44], the scattered light depends on
the vibrational density of states (VDOS) g(ω) through a coupling between photons and
vibrations, effectively considered with the light-vibration coupling function C(ω). Thus,
for a first-order Raman scattering experiment, the Stokes experimental intensity Iobs can be
written as:

Iobs(ω) =C(ω)g(ω)
[n(ω, T) + 1 ]

ω
(2)

where n(ω, T) =[exp (}ω /kBT) − 1]−1 is the Bose–Einstein population factor, kB and }
are the Boltzmann and the reduced Planck constants, respectively. Dividing the Raman
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intensity by [n(ω,T) + 1] and ω, we obtain the reduced Raman intensity Ired(ω), which is
proportional to the reduced density of vibrational states g(ω)/ω2:

Ired(ω) =C(ω)
g(ω)

ω2 (3)

Thus, the peak of Ired(ω) is essentially the peak in g(ω)/ω2 unlike in C(ω) which
is assumed to be C(ω) ∼ ω, and thus found to depend approximately linearly on fre-
quency in the region of the BP, for a wide number of glasses [45–47]. The result of the
treatment is reported in Figure 1. The parameters of the BP and in particular its maximum
is usually obtained using a fit with a log-normal function, as proposed by Malinovsky and
co-workers [48]. Consequently, we consider the BP position ωBP defined as the maximum
position in the reduced intensity, with an uncertainty of ∼1 cm−1.

Figure 1a reports the boson peak of SiO2 glass plotted in the reduced intensity and
fitted to the log-normal (red curve). The ωBP shift to higher frequencies as the Na2O
concentration increases but once the system reaches ~20% of Na2O the trend drops to
form a step-like shape. It is worth keeping in mind that within this chemical interval
often occurs the well-documented process called phase separation in the long-range order
structural domain of the supercooled liquid [49]. This process results in a heterogeneous
matrix in which different nano-sized regions having different concentrations (probably
due to segregation [50,51]), originate nano-domains with different elastic constants, which
may deeply influence the general behavior of the elastic medium properties. Indeed,
the sharp reduction of Tg mirrors a heavy alteration of the mechanical equilibrium that
prevailed [52] in the pristine glass (pure and slightly Na-doped silica) and drives mixed
glasses to become stressed and rigid. This is largely the case because the bond-bending
constraint of bridging oxygen atoms that were intrinsically broken [53] at ~1450 K becomes
restored in the weakly alloyed glass as Tg dramatically drops to ~700 K. However, upon
continuous addition of Na2O, the glass softens as network connectivity decreases, and
one expects an elastic phase transition from a stressed rigid phase to a floppy one. As a
matter of fact, this behavior is mirrored by the chemically driven trends of sound velocities
and elastic modulus that generally deviate from linearity from ~20% of Na2O from both
experiments [38] and molecular dynamics simulations [54]. At this point, the network of
this system is defined as isostatic, which is free of internal modes of deformation and stresses.
When compared with the trend observed in ref. [24], the overall distribution, although
scattered, confirms the inverse correlation between ωBP and SiO2 content; Figure 2a. The
correlation observed so far follows the conclusions outlined by ref. [55], in which the ωBP
shift to higher frequencies as the mean atomic volume, VM, decreases, thus mirroring the
interatomic distance. Our results are in line with the analysis and results of the low-ω
Raman spectroscopy (in NS20 and NS30 compositions) presented in ref. [56] and with
those retrieved by the low-temperature heat capacity of alkali silicate glasses described
in ref. [57]. Our results are also reasonably similar to those of ref. [55] for composition
NS10 and NS20 (differing just for a few cm−1) whilst for higher Na2O content, our results
deviate by several cm−1, displaying however values much closer to those found in ref. [31].
Generally, our results and those of the literature (although slightly in disagreement) agree
unanimously that the addition of sodium reduces the BP intensity, which is higher for
more polymerized structures. This trend can be observed in the Ired(ω) plot of Figure 1
highlighting the difference of magnitude from pure SiO2 to NS45.
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ωBP = −1.0 · SiO2 + 133 and K/G = −0.0146 · SiO2 + 2.50. The black bars on the upper right corner
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Conversely, the K/G in function of SiO2 turns out linear and slightly shifted from the
trend observed in ref. [24]; Figure 2b.

The ability to determine melt viscosity from the spectroscopic analysis of their parental
glasses first depends on the determination of a correlation between the melt fragility m and
glass transition temperature Tg with at least the ratio of the bulk and shear moduli K/G
and BP. These later can be derived using Raman or Brillouin spectroscopy, whilst Tg can
be measured by DSC and adopting the condition described in ref. [24] with proper shift
factors. The relaxed liquid is firstly cooled into the supercooled region at 10 K min−1, then
a same-speed heating scan will mark de facto the Tg identified as the onset of the phase
transition from glass to supercooled liquid.

Black squares in Figure 3a show data from this work that display a correlation between
the fragility and BP position, in which ωBP shift to higher frequencies as m increases, thus
finding a general agreement with that found in ref. [24] (grey squares). Although linear in
a short m interval, it keeps an exponential form that seems to match the asymptotic trend
at m = 14.97, the minimum possible value within the MYEGA formulation [58]. Conversely,
data derived via sound velocities (expressed by the K/G ratio, black squares), seems to line
up through another pattern with a lower slope with respect to those found in ref. [24] (grey
squares), see Figure 3b. This behavior indicates that this series looks shifted towards the
relation proposed by Novikov and Sokolov [59], revealing probably that the macroscopic
elastic properties of this binary system deviate substantially from those of multicomponent
ones (i.e., involving different species of glass formers or intermediates Al2O3 or Fe2O3).

Figure 4 shows the predicted viscosity of our binary system calculated through the
MYEGA equation vs. the measured viscosity data collected from the literature, for a total of
200 viscosity data. The temperature dependence of η was obtained by replacing m derived
by the model of ref. [24] and the Tg reported in Table 1 and then setting the η∞ = 10−2.93

Pa s. The resulting root-mean-square error (RMSE) for this investigated binary series is
0.03 for Raman and 0.13 for Brillouin. This test shows that a further external validation
produces RMSE values lower than those of ref. [24]; thus, the accuracy is significantly
below the estimated error, especially for Raman. Both approaches accurately corroborate
the literature on current data.
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Grey squares are predicted vs. measured viscosity data from ref. [24].

Finally, we use an external sample whose low-viscosity data are missing in the lit-
erature to validate our assumptions by measuring its glass transition temperature. The
relaxed liquid is first cooled into the supercooled area at 10 K min−1, and the subsequent
DSC heating scan is then carried out at the same rate. This treatment provided the Tg of
the sample (774 ± 1 K) which corresponds to η = 1012 Pa s. Figure 5a shows the heat flow
as a function of temperature for the NS10 glass sample (90% mol SiO2) where the grey
dashed lines indicate the tangents defining the onset of the glass transition (Tg). Figure 5b
shows the measured viscosity from the literature [13,35] with Raman- and Brillouin-based
estimates using the BP position and the K/G ratio, respectively. Our data show that the
methodology followed offers precise low- and high-temperature viscosity projection (lines).
A close look at the model shows that the BP-based prediction slightly underestimates the
high-T viscosity unlike the K/G-based model, which overestimates with a comparable
magnitude. Moreover, we want to emphasize that the cooling rates applied to the glasses
on which the model of study [24] was conducted were essentially unknown and varied.
Yet, the effectiveness of our validation shows that, also within this binary system, typical
laboratory cooling rates do not appreciably impact the link between K/G and BP of the
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glasses and melt fragility m of their parental melts. This implication is supported by the
findings of refs. [60,61] revealing no distinction between quenched and annealed glasses in
the ωBP and in the elastic parameters, thus demonstrating the lack of a significant link to
the extended structure of binary silicate glasses.
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lines represent the tangents defining the onset of the glass transition (Tonset). (b) External prediction
of the NS10 melt viscosity. Symbols represent measured viscosity data: triangles from the literature
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4. Conclusions

The Raman and Brillouin data confirm again that the melt fragility can be retrieved
by spectroscopic parameters embedded in glasses. Additionally, a valid estimation of
viscosity can be extended to this straightforward binary system by integrating the Tg
into the MYEGA equation. Our results are predicted by the model [24] with significantly
lower RMSE (by 90% for Raman and 46% for Brillouin). We additionally observed that
new measurements and the exhaustive examination of the literature both point to a clear
connection between BP and the acoustic modes. Beyond the predictions discussed in the
literature, we report here a direct relationship between the ratio of the bulk and shear
moduli and the BP position (ωBP). We thus take advantage of the ongoing discussion
surrounding the BP phenomenon to present fresh data that may contribute to a better
understanding of its theoretical description.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/min13091166/s1, Figure S1: HH Raman spectra; Table S1: EMPA
determinations and densities.
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