410 research outputs found
Evaluation of biodegradation kinetic constants for aromatic compounds by means of aerobic batch experiments
Kinetics of aerobic biodegradation have been investigated for twenty aromatic species using sludges collected from the aeration basin of municipal sewage treatment plants. The reproducibility of the results is tested with respect to the sludges period of collection and the wastewater treatment plant where they are taken. The comparison of kinetic constants, estimated for the investigated chemicals, allows to evaluate the reactivity effect of single groups (i.e., -OH, -CH3, -Cl, -NO2) into the aromatic structures. The search for easy structure-reactivity relationships is also attempted by means of contributing group methods
Surface reactivity of amphibole asbestos. A comparison between crocidolite and tremolite
Among asbestos minerals, fibrous riebeckite (crocidolite) and tremolite share the amphibole structure but
largely differ in terms of their iron content and oxidation state. In asbestos toxicology, iron-generated free
radicals are largely held as one of the causes of asbestos malignant effect. With the aim of clarifying i) the
relationship between Fe occurrence and asbestos surface reactivity, and ii) how free-radical generation is
modulated by surface modifications of the minerals, UICC crocidolite and fibrous tremolite from Maryland
were leached from 1 day to 1 month in an oxidative medium buffered at pH 7.4 to induce redox alterations
and surface rearrangements that may occur in body fluids. Structural and chemical modifications and free
radical generation were monitored by HR-TEM/EDS and spin trapping/EPR spectroscopy, respectively.
Free radical yield resulted to be dependent on few specific Fe2+ and Fe3+ surface sites rather than total Fe
content. The evolution of reactivity with time highlighted that low-coordinated Fe ions primarily contribute
to the overall reactivity of the fibre. Current findings contribute to explain the causes of the severe asbestosinduced
oxidative stress at molecular level also for iron-poor amphiboles, and demonstrate that asbestos
have a sustained surface radical activity even when highly altered by oxidative leaching
Protein Kinase C-α Regulates Insulin Action and Degradation by Interacting with Insulin Receptor Substrate-1 and 14-3-3ϵ
Protein kinase C (PKC)-alpha exerts a regulatory function on insulin action. We showed by overlay blot that PKC alpha directly binds a 180-kDa protein, corresponding to IRS-1, and a 30-kDa molecular species, identified as 14-3-3 epsilon. In intact NIH-3T3 cells overexpressing insulin receptors (3T3-hIR), insulin selectively increased PKC alpha coprecipitation with IRS-1, but not with IRS-2, and with 14-3-3 epsilon, but not with other 14-3-3 isoforms. Overexpression of 14-3-3 epsilon in 3T3-hIR cells significantly reduced IRS-1-bound PKC alpha activity, without altering IRS-1/PKC alpha co-precipitation. 14-3-3 epsilon overexpression also increased insulin-stimulated insulin receptor and IRS-1 tyrosine phosphorylation, followed by increased activation of Raf1, ERK1/2, and Akt/protein kinase B. Insulin-induced glycogen synthase activity and thymidine incorporation were also augmented. Consistently, selective depletion of 14-3-3 epsilon by antisense oligonucleotides caused a 3-fold increase of IRS-1-bound PKC alpha activity and a similarly sized reduction of insulin receptor and IRS-1 tyrosine phosphorylation and signaling. In turn, selective inhibition of PKC alpha expression by antisense oligonucleotides reverted the negative effect of 14-3-3 epsilon depletion on insulin signaling. Moreover, PKC alpha inhibition was accompanied by a > 2-fold decrease of insulin degradation. Similar results were also obtained by overexpressing 14-3-3 epsilon. Thus, in NIH-3T3 cells, insulin induces the formation of multimolecular complexes, including IRS-1, PKC alpha, and 14-3-3 epsilon. The presence of 14-3-3 epsilon in the complex is not necessary for IRS-1/PKC alpha interaction but modulates PKC alpha activity, thereby regulating insulin signaling and degradation
Surface reactivity of amphibole asbestos: A comparison between two tremolite samples with different surface area
Surface reactivity of a fibrous tremolite sample from Castelluccio Superiore (Italy) was investigated by means of free radical generation following incubation in H2O2solution buffered at pH 7.4, for several time points, ranging from 1 day to 1 month. Results obtained were compared with those of another fibrous tremolite sample (from Maryland, USA), with much smaller surface area. Structural, morphological, and chemical alterations induced on tremolite by incubation were investigated by HR-TEM/EDS. The generation of HO•and COO-•radicals following reaction of tremolite with H2O2or formate ion was investigated by spin trapping/EPR spectroscopy. The dissolution process and surface modification were slower for the Maryland sample, with lowest surface area. Surface modification indicated the occurrence of either low- or high-coordinated Fe centres on the surface, as well as the evolution of their nuclearity. In turn, iron centres determine the reactivity of the fibre surface and the yield of HO•and COO-•radical species. The evolution of radical reactivity over time was proved to be largely dependent on surface area, with the highest radical yield occurring for low-area tremolite incubated over long times. The experimental results obtained in this study as well as the comparison with previous studies further confirm that surface reactivity of mineral fibres and inorganic particles is not dependent on Fetotcontent per se, but is likely due to surface properties and occurrence of specific iron sites
Imbalance between nitric oxide generation and oxidative stress in patients with peripheral arterial disease: Effect of an antioxidant treatment
BackgroundNitric oxide (NO), a potent vasodilator produced by endothelial cells, is reduced in patients with peripheral arterial disease (PAD), but the mechanism has not been fully elucidated. Because NO is rapidly inactivated by superoxide anion, we speculated that enhanced oxidative stress could lower NO generation. The aim of our study was to investigate if an imbalance between oxidative stress and NO does exist in patients with PAD and if an increase of NO formation could be achieved by an antioxidant treatment.MethodsIn a first study, serum levels of nitrite and nitrate (NOx), markers of NO generation, and 8-hydroxy-2-deoxyguanosine (8-OHdG), a marker of oxidative stress and maximal walking distance (MWD), were measured in 40 PAD patients and 40 controls. In a second study, 10 PAD patients were randomly allocated in a crossover design to intravenous propionyl-L-carnitine (6 g/day) or placebo for 7 days, with a washout of 30 days between the two phases of the trial. Serum levels of NOx and 8-OHdG were measured before and after the study.ResultsCompared with controls, serum levels of 8-OHdG (mean ± SD) were significantly increased in PAD patients (4.4 ± 3.1 ng/mL vs 2.4 ± 1.2 ng/mL; P < .001), and serum levels of NOx were significantly decreased (11.6 ± 6 μM vs 17 ± 6.1 μM; P < .001). Levels of 8-OHdG and NOx were inversely correlated (r = −0.879; P < .001). Serum levels 8-OHdG were inversely correlated with MWD (r = −0.48, P = .002). The interventional trial showed no changes in the patients given placebo. Patients treated with propionyl-L-carnitine showed a significant increase of MWD from 101 ± 31 meters to 129 ± 35 meters (P = .007) and in NOx from 14.5 ± 4.5 μM to 17.1 ± 3.8 μM (P = .007). A significant decrease of 8-OHdG from 3.6 ± 1.1 ng/mL to 2.6 ± 1 ng/mL was also found (P = .005.)ConclusionsThis study suggests that in PAD patients, the reduction of NO generation could be dependent upon enhanced oxidative stress
Hyperglycemia at 1h-OGTT in Pregnancy. A Reliable Predictor of Metabolic Outcomes?
Gestational diabetes mellitus (GDM) is associated with a high risk of developing type 2 diabetes (T2DM) and cardiovascular disease (CVD). Identifying among GDM women those who are at high risk may help prevent T2DM and, possibly CVD. Several studies have shown that in women with GDM, hyperglycemia at 1 h during an oral glucose tolerance test (OGTT) (1-h PG) is not only associated with an increase in adverse maternal and perinatal outcomes but is also an independent predictor of T2DM. Interestingly, also in pregnant women who did not meet the criteria for a GDM diagnosis, 1-h PG was an independent predictor of postpartum impaired insulin sensitivity and beta-cell dysfunction. Moreover, maternal 1- and 2-h PG levels have been found to be independently associated with insulin resistance and impaired insulin secretion also during childhood. There is evidence that hyperglycemia at 1h PG during pregnancy may identify women at high risk of future CVD, due to its association with an unfavorable CV risk profile, inflammation, arterial stiffness and endothelial dysfunction. Overall, hyperglycemia at 1h during an OGTT in pregnancy may be a valuable prediction tool for identifying women at a high risk of future T2DM, who may then benefit from therapeutic strategies aimed at preventing cardiovascular outcomes
Sex-specific differences in left ventricular mass and myocardial energetic efficiency in non-diabetic, pre-diabetic and newly diagnosed type 2 diabetic subjects
Background: Women with type 2 diabetes (T2DM) have a higher excess risk for cardiovascular disease (CVD) than their male counterparts. However, whether the risk for CVD is higher in prediabetic women than men is still debated. We aimed to determine whether sex-related differences exist in left ventricular mass index (LVMI), and myocardial mechano-energetic efficiency (MEEi) in with normal glucose tolerant (NGT), pre-diabetic and newly diagnosed type 2 diabetic subjects. Methods: Sex-related differences in LVMI and myocardial MEEi, assessed by validated echocardiography-derived measures, were examined among 1562 adults with NGT, prediabetes, and newly diagnosed T2DM, defined according to fasting glucose, 2-h post-load glucose, or HbA1c. Results: Worsening of glucose tolerance in both men and women was associated with an increase in age-adjusted LVMI and myocardial MEEi. Women with newly diagnosed T2DM exhibited greater relative differences in LVMI and myocardial MEEi than diabetic men when compared with their NGT counterparts. Prediabetic women exhibited greater relative differences in myocardial MEEi, but not in LVMI, than prediabetic men when compared with their NGT counterparts. The statistical test for interaction between sex and glucose tolerance on both LVMI (P < 0.0001), and myocardial MEEi (P < 0.0001) was significant suggesting a sex-specific association. Conclusions: Left ventricle is subject to maladaptive changes with worsening of glucose tolerance, especially in women with newly diagnosed T2DM. The sex-specific increase in LVM and decrease in MEEi, both being predictors of CVD, may have a role in explaining the stronger impact of T2DM on the excess risk of CVD in women than in men
SPECIFIC DYSPEPTIC SYMPTOMS ARE ASSOCIATED WITH POOR RESPONSE TO THERAPY IN PATIENTS WITH GASTROESOPHAGEAL REFLUX DISEASE
Background: In gastroesophageal reflux disease (GORD) patients, coexistence of functional dyspepsia (FD) is known to be associated with poor response to proton pump inhibitors (PPIs), but the contribution of specific dyspepsia symptoms has not been systematically investigated yet. Objective: To characterize the impact of dyspepsia symptoms on PPIs response in GORD patients. Methods:. The enrolled subjects were 100 patients with diagnosis of GORD. All patients underwent a 24 hour pH-impedance test, while on PPIs-therapy. Patients were divided into two groups, refractory and responders, according to the persistence of GORD symptoms. A standardized questionnaire for FD was also administered to assess presence of dyspepsia symptoms. Results: In the subgroup of refractory patients FD was more prevalent than in responder ones, with postprandial fullness, nausea, vomiting, early satiation and epigastric pain being significantly prevalent in refractory GORD-patients. In the multivariate analysis only early satiation and vomiting were significantly associated with poor response to PPIs Conclusion: Coexistence of FD is associated with refractory-GORD. We showed that only early satiation and vomiting are risk factors for poor response to PPIs therapy. Our findings suggest that symptoms of early satiation and vomiting would help to identify the subset of PPIs-refractory GORD patients
The GLP-1 receptor agonists exenatide and liraglutide activate Glucose transport by an AMPK-dependent mechanism
Additional file 2: Figure S2. Effects of EXE on Glut-4 in cultured L6 myotubes. Myotubes were stimulated with 100 nmol/l EXE for 20 min or 48 h. Panel A shows qPCR of Glut-4 mRNA. In panel B is a representative western blot for Glut-4 and β-Actin (loading control). In panel C is a representative western blot for Glut-4 and β-IR (loading control) in plasma membrane (PM) extracts (Glut-4 translocation). For A and C panels, data are shown as fold increase over control ± SD of three independent experiments (*p < 0.001, vs Ctrl)
Are circulating Mg2+ levels associated with glucose tolerance profiles and incident type 2 diabetes?
Magnesium (Mg2+) is an enzyme co-factor that plays a key role in many biochemical reactions, as well as in glucose metabolism. Clinical evidences have demonstrated that depletion of serum Mg2+ increases exponentially with the duration of type 2 diabetes mellitus (T2DM). Diabetes is associated with low Mg2+, and hypomagnesemia is associated with insulin resistance, inflammation, and increased risk for cardiovascular disease. In subjects at high risk of inflammation and insulin resistance, supplementation of Mg2+ alone ameliorates both phenotypes, slowing the development and progression of hepatic steatosis. We analyze the relationship between serum Mg2+ levels and the onset of T2DM in a large cohort of well-characterized adult white individuals participating in the CATAMERI study, who were reexamined after a mean follow-up of 5.6 ± 0.9 years. In our analysis we acquired a significant negative correlation between Mg2+ levels, fasting glucose, and 2h-post load glucose in subjects who underwent an OGTT. Moreover, Mg2+ levels correlated negatively with fasting insulin levels, and positively with the lipid profile. As for the detrimental effect of lower circulating Mg2+ levels, our data revealed a significant reduction of T2DM risk of about 20% for each 1 mg/dL increase of circulating Mg2+. The present results are consistent with the theory that Mg2+ supplementation could ameliorate insulin sensitivity reducing the risk to develop T2DM
- …