10 research outputs found

    Peripheral blood mononuclear cells from mild cognitive impairment patients show deregulation of Bax and Sod1 mRNAs

    No full text
    Elevated oxidative stress-induced apoptosis has been found in peripheral cells from patients with Alzheimer's disease (AD). Furthermore, treatment of lymphocytes from AD patients, with Aβ1-42and H2O2results in enhanced apoptosis. Mild cognitive impairment (MCI), a clinical condition between normal aging and AD, shares with AD a similar pattern of peripheral markers of oxidative stress. In this study we investigated spontaneous and H2O2-induced oxidative stress and apoptosis levels in peripheral blood mononuclear cells (PBMCs) from MCI and AD patients, as well as from Parkinson's disease (PD) patients without cognitive impairment or age-matched healthy control. Sod1 mRNA levels were studied to analyse the anti-oxidative pathway, while Bax and Bcl-2 mRNAs levels and PARP protein cleavage were monitored to study apoptosis. We found that the expression of Sod1 and Bax mRNAs was statistically higher in both MCI and AD patients compared to controls or PD subjects. Since Bcl-2 mRNA level was not different among groups, the Bax/Bcl-2 ratio was statistically higher in AD and MCI patients. PARP cleavage was also enhanced in PBMCs from MCI and AD individuals and this finding was associated with a higher level of spontaneous apoptosis. Interestingly, exposure to H2O2induced a significant decrease of Bcl-2 mRNA transcript, while Sod1 and Bax mRNAs levels were unchanged in PBMCs derived from MCI and AD patients. In conclusion, our results show that Bax and Sod1 mRNA levels are altered in PBMCs from both MCI and AD patients and indicate these changes as potential biomarkers in the early diagnosis of AD. © 2009 Elsevier Ireland Ltd. All rights reserved

    Analysis of human alveolar osteoblast behavior on a nano-hydroxyapatite substrate: an in vitro study.

    No full text
    Background: Nano-hydroxyapatite (nHA) is a potential ideal biomaterial for bone regeneration. However, studies have yet to characterize the behavior of human osteoblasts derived from alveolar bone on nHA. Thus, the aim of the present study was to evaluate the influence of nHA on the adhesion, proliferation and differentiation of these alveolar bone-derived cells. Methods: Primary human alveolar osteoblasts were collected from the alveolar ridge of a male periodontal patient during osseous resective surgery and grown on culture plates coated with either polylysine or polylysine with nano-hydroxyapatite (POL/nHA) composite. The cells were grown and observed for 14 days, and then assessed for potential modifications to osteoblasts homeostasis as evaluated by quantitative reverse transcriptase-polymerase chain reaction (real time RT-PCR), scanning electron microscopy and atomic force microscopy. Results: Real time PCR revealed a significant increase in the expression of the selected markers of osteoblast differentiation (bone morphogenetic protein (BMP)-2,-5,-7, ALP, COLL-1A2, OC, ON) in cells grown on the POL/nHA substrate. In addition, as compared with the POL surface, cells grown on the POL/nHA substrate demonstrated better osteoconductive properties, as demonstrated by the increase in adhesion and spreading, likely as a result of the increased surface roughness of the composite. Conclusions: The increased expression of BMPs and osteoinductive biomarkers suggest that nano-hydroxyapatite may stimulate the proliferation and differentiation of local alveolar osteoblasts and thus encourage bone regeneration at sites of alveolar bone regeneration

    Abdominal Fat and Sarcopenia in Women Significantly Alter Osteoblasts Homeostasis In Vitro by a WNT/-Catenin Dependent Mechanism

    Get PDF
    Obesity and sarcopenia have been associated with mineral metabolism derangement and low bone mineral density (BMD). We investigated whether imbalance of serum factors in obese or obese sarcopenic patients could affect bone cell activity in vitro. To evaluate and characterize potential cellular and molecular changes of human osteoblasts, cells were exposed to sera of four groups of patients: (1) affected by obesity with normal BMD (O), (2) affected by obesity with low BMD (OO), (3) affected by obesity and sarcopenia (OS), and (4) affected by obesity, sarcopenia, and lowBMD(OOS) as compared to subjects with normal bodyweight and normalBMD(CTL). Patients were previously investigated and characterized for body composition, biochemical and bone turnover markers. Then, sera of different groups of patients were used to incubate human osteoblasts and evaluate potential alterations in cell homeostasis. Exposure to OO, OS, and OOS sera significantly reduced alkaline phosphatase, osteopontin, and BMP4 expression compared to cells exposed toOand CTL, indicating a detrimental effect on osteoblast differentiation. Interestingly, sera of all groups of patients induced intracellular alteration in Wnt/-catenin molecular pathway, as demonstrated by the significant alteration of specific target genes expression and by altered -catenin cellular compartmentalization and GSK3 phosphorylation. In conclusion our results show for the first time that sera of obese subjects with low bone mineral density and sarcopenia significantly alter osteoblasts homeostasis in vitro, indicating potential detrimental effects of trunk fat on bone formation and skeletal homeostasis

    Abdominal Fat and Sarcopenia in Women Significantly Alter Osteoblasts Homeostasis In Vitro by a WNT/ β -Catenin Dependent Mechanism.

    No full text
    Obesity and sarcopenia have been associated with mineral metabolism derangement and low bone mineral density (BMD). We investigated whether imbalance of serum factors in obese or obese sarcopenic patients could affect bone cell activity in vitro. To evaluate and characterize potential cellular and molecular changes of human osteoblasts, cells were exposed to sera of four groups of patients: (1) affected by obesity with normal BMD (O), (2) affected by obesity with low BMD (OO), (3) affected by obesity and sarcopenia (OS), and (4) affected by obesity, sarcopenia, and low BMD(OOS) as compared to subjects with normal body weight and normal BMD(CTL). Patients were previously investigated and characterized for body composition, biochemical and bone turnover markers. Then, sera of different groups of patients were used to incubate human osteoblasts and evaluate potential alterations in cell homeostasis. Exposure to OO, OS, and OOS sera significantly reduced alkaline phosphatase, osteopontin, and BMP4 expression compared to cells exposed to O and CTL, indicating a detrimental effect on osteoblast differentiation. Interestingly, sera of all groups of patients induced intracellular alteration in Wnt/ss-catenin molecular pathway, as demonstrated by the significant alteration of specific target genes expression and by altered ss-catenin cellular compartmentalization and GSK3 ss phosphorylation. In conclusion our results show for the first time that sera of obese subjects with low bone mineral density and sarcopenia significantly alter osteoblasts homeostasis in vitro, indicating potential detrimental effects of trunk fat on bone formation and skeletal homeostasis

    Analysis of human alveolar osteoblast behavior on a nano-hydroxyapatite substrate: an in vitro study

    Get PDF
    Background: Nano-hydroxyapatite (nHA) is a potential ideal biomaterial for bone regeneration. However, studies have yet to characterize the behavior of human osteoblasts derived from alveolar bone on nHA. Thus, the aim of the present study was to evaluate the influence of nHA on the adhesion, proliferation and differentiation of these alveolar bone-derived cells.Methods: Primary human alveolar osteoblasts were collected from the alveolar ridge of a male periodontal patient during osseous resective surgery and grown on culture plates coated with either polylysine or polylysine with nano-hydroxyapatite (POL/nHA) composite. The cells were grown and observed for 14 days, and then assessed for potential modifications to osteoblasts homeostasis as evaluated by quantitative reverse transcriptase-polymerase chain reaction (real time RT-PCR), scanning electron microscopy and atomic force microscopy.Results: Real time PCR revealed a significant increase in the expression of the selected markers of osteoblast differentiation (bone morphogenetic protein (BMP)-2,-5,-7, ALP, COLL-1A2, OC, ON) in cells grown on the POL/nHA substrate. In addition, as compared with the POL surface, cells grown on the POL/nHA substrate demonstrated better osteoconductive properties, as demonstrated by the increase in adhesion and spreading, likely as a result of the increased surface roughness of the composite.Conclusions: The increased expression of BMPs and osteoinductive biomarkers suggest that nano-hydroxyapatite may stimulate the proliferation and differentiation of local alveolar osteoblasts and thus encourage bone regeneration at sites of alveolar bone regeneration
    corecore