12 research outputs found

    Misbehaviour of XIST RNA in Breast Cancer Cells

    Get PDF
    A role of X chromosome inactivation process in the development of breast cancer have been suggested. In particular, the relationship between the breast cancer predisposing gene BRCA1 and XIST, the main mediator of X chromosome inactivation, has been intensely investigated, but still remains controversial. We investigated this topic by assessing XIST behaviour in different groups of breast carcinomas and in a panel of breast cancer cell lines both BRCA1 mutant and wild type. In addition, we evaluated the occurrence of broader defects of heterochromatin in relation to BRCA1 status in breast cancer cells. We provide evidence that in breast cancer cells BRCA1 is involved in XIST regulation on the active X chromosome, but not in its localization as previously suggested, and that XIST can be unusually expressed by an active X and can decorate it. This indicates that the detection of XIST cloud in cancer cell is not synonymous of the presence of an inactive X chromosome. Moreover, we show that global heterochromatin defects observed in breast tumor cells are independent of BRCA1 status. Our observations sheds light on a possible previously uncharacterized mechanism of breast carcinogenesis mediated by XIST misbehaviour, particularly in BRCA1-related cancers. Moreover, the significant higher levels of XIST-RNA detected in BRCA1-associated respect to sporadic basal-like cancers, opens the possibility to use XIST expression as a marker to discriminate between the two groups of tumors

    The Novel Mouse Mutation Oblivion Inactivates the PMCA2 Pump and Causes Progressive Hearing Loss

    Get PDF
    Progressive hearing loss is common in the human population, but we have few clues to the molecular basis. Mouse mutants with progressive hearing loss offer valuable insights, and ENU (N-ethyl-N-nitrosourea) mutagenesis is a useful way of generating models. We have characterised a new ENU-induced mouse mutant, Oblivion (allele symbol Obl), showing semi-dominant inheritance of hearing impairment. Obl/+ mutants showed increasing hearing impairment from post-natal day (P)20 to P90, and loss of auditory function was followed by a corresponding base to apex progression of hair cell degeneration. Obl/Obl mutants were small, showed severe vestibular dysfunction by 2 weeks of age, and were completely deaf from birth; sensory hair cells were completely degenerate in the basal turn of the cochlea, although hair cells appeared normal in the apex. We mapped the mutation to Chromosome 6. Mutation analysis of Atp2b2 showed a missense mutation (2630C→T) in exon 15, causing a serine to phenylalanine substitution (S877F) in transmembrane domain 6 of the PMCA2 pump, the resident Ca2+ pump of hair cell stereocilia. Transmembrane domain mutations in these pumps generally are believed to be incompatible with normal targeting of the protein to the plasma membrane. However, analyses of hair cells in cultured utricular maculae of Obl/Obl mice and of the mutant Obl pump in model cells showed that the protein was correctly targeted to the plasma membrane. Biochemical and biophysical characterisation showed that the pump had lost a significant portion of its non-stimulated Ca2+ exporting ability. These findings can explain the progressive loss of auditory function, and indicate the limits in our ability to predict mechanism from sequence alone

    Chromosomal mosaicism:Origins and clinical implications in preimplantation and prenatal diagnosis

    No full text
    The diagnosis of chromosomal mosaicism in the preimplantation and prenatal stage is fraught with uncertainty and multiple factors need to be considered in order to gauge the likely impact. The clinical effects of chromosomal mosaicism are directly linked to the type of the imbalance (size, gene content and copy number), the timing of the initial event leading to mosaicism during embryogenesis/fetal development, the distribution of the abnormal cells throughout the various tissues within the body as well as the ratio of normal/abnormal cells within each of those tissues. Additional factors such as assay noise and culture artifacts also have an impact on the significance and management of mosaic cases. Genetic counseling is an important part of educating patients about the likelihood of having a liveborn with a chromosome abnormality and these risks differ according to the time of ascertainment and the tissue where the mosaic cells were initially discovered. Each situation needs to be assessed on a case-by-case basis and counseled accordingly. This review will discuss the clinical impact of finding mosaicism through: embryo biopsy, chorionic villus sampling (CVS), amniocentesis, and non-invasive prenatal testing (NIPT) using cell free DNA (cfDNA)

    Application of a new molecular technique for the genetic evaluation of products of conception

    No full text
    Objectives: Karyotyping is a well-established method of investigating the genetic content of product of conceptions (POCs). Because of the high rate of culture failure and maternal cell contamination, failed results or 46,XX findings are often obtained. Different molecular approaches that are not culture dependent have been proposed to circumvent these limits. On the basis of the robust experience previously obtained with bacterial artificial chromosomes (BACs)-on-Beads™ (BoBs™), we evaluated the same technology that we had used for the analysis of prenatal samples on POCs. Method: KaryoLite™ BoBs™ includes 91 beads, each of which is conjugated with a composite of multiple neighboring BACs according to the hg19 assembly. It quantifies proximal and terminal regions of each chromosome arm. The study included 376 samples. Results: The failure rate was 2%, and reproducibility >99%; false-positive and false-negative rates wer

    X chromosome inactivation pattern in BRCA gene mutation carriers.

    No full text
    An association of preferential X chromosome inactivation (XCI) with BRCA gene status and breast/ovarian cancer risk has been reported. We evaluated XCI in a large group of BRCA mutation carriers compared to non-carriers and investigated associations between preferential XCI (⩾90:10) and age, mutated gene, cancer development and chemotherapy. XCI was analysed by human androgen receptor (HUMARA) assay and pyrosequencing in 437 BRCA1 or BRCA2 mutation carriers and 445 age-matched controls. The distribution of XCI patterns in the two groups was compared by logistic regression analysis. The association between preferential XCI and selected variables was investigated in both univariate and multivariate fashion. In univariate analyses preferential XCI was not significantly associated with the probability of being a BRCA mutation carrier, nor with cancer status, whereas chemotherapeutic regime and age both showed a significant association. In multivariate analysis only age maintained significance (odds ratio, 1.056; 95% confidence interval, 1.016-1.096). Our findings do not support the usefulness of XCI analysis for the identification of BRCA mutation carriers and cancer risk assessment. The increasing preferential XCI frequency with ageing and the association with chemotherapy justify extending the investigation to other categories of female cancer patients to identify possible X-linked loci implicated in cell survival

    Internalization of nanopolymeric tracers does not alter characteristics of placental cells

    Get PDF
    In the cell therapy scenario, efficient tracing of transplanted cells is essential for investigating cell migration and interactions with host tissues. This is fundamental to provide mechanistic insights which altogether allow for the understanding of the translational potential of placental cell therapy in the clinical setting. Mesenchymal stem/stromal cells (MSC) from human placenta are increasingly being investigated for their potential in treating patients with a variety of diseases. In this study, we investigated the feasibility of using poly (methyl methacrylate) nanoparticles (PMMA‐NPs) to trace placental MSC, namely those from the amniotic membrane (hAMSC) and early chorionic villi (hCV‐MSC). We report that PMMP‐NPs are efficiently internalized and retained in both populations, and do not alter cell morphofunctional parameters. We observed that PMMP‐NP incorporation does not alter in vitro immune modulatory capability of placental MSC, a characteristic central to their reparative/therapeutic effects in vitro. We also show that in vitro, PMMP‐NP uptake is not affected by hypoxia. Interestingly, after in vivo brain ischaemia and reperfusion injury achieved by transient middle cerebral artery occlusion (tMCAo) in mice, iv hAMSC treatment resulted in significant improvement in cognitive function compared to PBS‐treated tMCAo mice. Our study provides evidence that tracing placental MSC with PMMP‐NPs does not alter their in vitro and in vivo functions. These observations are grounds for the use of PMMP‐NPs as tools to investigate the therapeutic mechanisms of hAMSC and hCV‐MSC in preclinical models of inflammatory‐driven diseases.ISSN:1582-1838ISSN:1582-493
    corecore