49 research outputs found

    The p50 NF-\u3baB subunit is a prognostic regulator of colorectal cancer-associated inflammation

    Get PDF
    In most tumors, tumor associated macrophages (TAMs) express an M2-skewed phenotype and are therefore associated with unfavorable prognosis. However, the impact of TAMs in colorectal cancer (CRC) development and outcome is still controversial. We first demonstrate, by parallel studies in colitis-associated cancer (CAC) and in genetically driven ApcMin mouse models, that p50 NF-\u3baB is essential for CRC development by restraining M1-dependent antitumor response. In absence of p50 mice developed fewer and smaller CRC lesions which express enhanced levels of M1/Th1 cytokines/chemokines including IL-12 and CXCL10, whose administration restrained CAC development in vivo. Moreover colons from p50-/- tumor bearers showed a reduced number of TAMs, as opposed to increased NK, NKT, CD8+ T cells and apoptotic cancer cells. Consistently, in CRC patients, high burden of p50+ TAMs was associated with decreased M1/Th1 inflammation and worse outcome indicating p50 as a new candidate for prognostic and target therapeutic intervention

    Melanoma-specific bcl-2 promotes a protumoral M2-like phenotype by tumor-associated macrophages

    Get PDF
    BackgroundA bidirectional crosstalk between tumor cells and the surrounding microenvironment contributes to tumor progression and response to therapy. Our previous studies have demonstrated that bcl-2 affects melanoma progression and regulates the tumor microenvironment. The aim of this study was to evaluate whether bcl-2 expression in melanoma cells could influence tumor-promoting functions of tumor-associated macrophages, a major constituent of the tumor microenvironment that affects anticancer immunity favoring tumor progression.MethodsTHP-1 monocytic cells, monocyte-derived macrophages and melanoma cells expressing different levels of bcl-2 protein were used. ELISA, qRT-PCR and Western blot analyses were used to evaluate macrophage polarization markers and protein expression levels. Chromatin immunoprecipitation assay was performed to evaluate transcription factor recruitment at specific promoters. Boyden chamber was used for migration experiments. Cytofluorimetric and immunohistochemical analyses were carried out to evaluate infiltrating macrophages and T cells in melanoma specimens from patients or mice.ResultsHigher production of tumor-promoting and chemotactic factors, and M2-polarized activation was observed when macrophages were exposed to culture media from melanoma cells overexpressing bcl-2, while bcl-2 silencing in melanoma cells inhibited the M2 macrophage polarization. In agreement, the number of melanoma-infiltrating macrophages in vivo was increased, in parallel with a greater expression of bcl-2 in tumor cells. Tumor-derived interleukin-1β has been identified as the effector cytokine of bcl-2-dependent macrophage reprogramming, according to reduced tumor growth, decreased number of M2-polarized tumor-associated macrophages and increased number of infiltrating CD4+IFNγ+and CD8+IFNγ+effector T lymphocytes, which we observed in response to in vivo treatment with the IL-1 receptor antagonist kineret. Finally, in tumor specimens from patients with melanoma, high bcl-2 expression correlated with increased infiltration of M2-polarized CD163+macrophages, hence supporting the clinical relevance of the crosstalk between tumor cells and microenvironment.ConclusionsTaken together, our results show that melanoma-specific bcl-2 controls an IL-1β-driven axis of macrophage diversion that establishes tumor microenvironmental conditions favoring melanoma development. Interfering with this pathway might provide novel therapeutic strategies

    Immunometabolic interference between cancer and COVID-19

    Get PDF
    Even though cancer patients are generally considered more susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the mechanisms driving their predisposition to severe forms of coronavirus disease 2019 (COVID-19) have not yet been deciphered. Since metabolic disorders are associated with homeostatic frailty, which increases the risk of infection and cancer, we asked whether we could identify immunometabolic pathways intersecting with cancer and SARS-CoV-2 infection. Thanks to a combined flow cytometry and multiomics approach, here we show that the immunometabolic traits of COVID-19 cancer patients encompass alterations in the frequency and activation status of circulating myeloid and lymphoid subsets, and that these changes are associated with i) depletion of tryptophan and its related neuromediator tryptamine, ii) accumulation of immunosuppressive tryptophan metabolites (i.e., kynurenines), and iii) low nicotinamide adenine dinucleotide (NAD+) availability. This metabolic imbalance is accompanied by altered expression of inflammatory cytokines in peripheral blood mononuclear cells (PBMCs), with a distinctive downregulation of IL-6 and upregulation of IFNγ mRNA expression levels. Altogether, our findings indicate that cancer not only attenuates the inflammatory state in COVID-19 patients but also contributes to weakening their precarious metabolic state by interfering with NAD+-dependent immune homeostasis

    Myeloid-Derived Suppressor Cells: Ductile Targets in Disease

    Get PDF
    Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of immature myeloid cells with major regulatory functions and rise during pathological conditions, including cancer, infections and autoimmune conditions. MDSC expansion is generally linked to inflammatory processes that emerge in response to stable immunological stress, which alter both magnitude and quality of the myelopoietic output. Inability to reinstate physiological myelopoiesis would fall in an “emergency state” that perpetually reprograms myeloid cells toward suppressive functions. While differentiation and reprogramming of myeloid cells toward an immunosuppressive phenotype can be considered the result of a multistep process that originates in the bone marrow and culminates in the tumor microenvironment, the identification of its driving events may offer potential therapeutic approaches in different pathologies. Indeed, whereas expansion of MDSCs, in both murine and human tumor bearers, results in reduced immune surveillance and antitumor cytotoxicity, placing an obstacle to the effectiveness of anticancer therapies, adoptive transfer of MDSCs has shown therapeutic benefits in autoimmune disorders. Here, we describe relevant mechanisms of myeloid cell reprogramming leading to generation of suppressive MDSCs and discuss their therapeutic ductility in disease

    Asbestos Exposure in Patients with Malignant Pleural Mesothelioma included in the PRIMATE Study, Lombardy, Italy

    Get PDF
    The PRIMATE study is an Italian translational research project, which aims to identify personalized biomarkers associated with clinical characteristics of malignant pleural mesothelioma (MPM). For this purpose, characteristics of MPM patients with different degrees of asbestos exposure will be compared to identify somatic mutations, germline polymorphism, and blood inflammatory biomarkers. In this framework, we assessed exposure to asbestos for 562 cases of MPM extracted from the Lombardy region Mesothelioma Registry (RML), for which a complete interview based on a standardized national questionnaire and histopathological specimens were available. Exposure assessment was performed: (1) through experts' evaluation (considered as the gold standard for the purpose of this study), according to the guidelines of the Italian National Mesothelioma Registry (ReNaM) and (2) using a job-exposure matrix (SYN-JEM) to obtain qualitative (ever/never) and quantitative estimates of occupational asbestos exposure (cumulative exposure expressed in fibers per mL (f/mL)). The performance of SYN-JEM was evaluated against the experts' evaluation. According to experts' evaluation, occupational asbestos exposure was recognized in 73.6% of men and 23.6% of women; furthermore, 29 men (7.8%) and 70 women (36.9%) had non-occupational exposure to asbestos. When applying SYN-JEM, 225 men (60.5%) and 25 women (13.2%) were classified as occupationally exposed, with a median cumulative exposure higher for men (1.7 f/mL-years) than for women (1.2 f/mL-years). The concordance between the two methods (Cohen’s kappa) for occupational exposure assessment was 0.46 overall (0.41 in men, and 0.07 in women). Sensitivity was higher in men (0.73) than in women (0.18), while specificity was higher in women (0.88) than in men (0.74). Overall, both methods can be used to reconstruct past occupational exposure to asbestos, each with its own advantages and limitations. View Full-Tex

    Immunometabolic interference between cancer and COVID-19

    Get PDF
    Even though cancer patients are generally considered more susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the mechanisms driving their predisposition to severe forms of coronavirus disease 2019 (COVID-19) have not yet been deciphered. Since metabolic disorders are associated with homeostatic frailty, which increases the risk of infection and cancer, we asked whether we could identify immunometabolic pathways intersecting with cancer and SARS-CoV-2 infection. Thanks to a combined flow cytometry and multiomics approach, here we show that the immunometabolic traits of COVID-19 cancer patients encompass alterations in the frequency and activation status of circulating myeloid and lymphoid subsets, and that these changes are associated with i) depletion of tryptophan and its related neuromediator tryptamine, ii) accumulation of immunosuppressive tryptophan metabolites (i.e., kynurenines), and iii) low nicotinamide adenine dinucleotide (NAD+) availability. This metabolic imbalance is accompanied by altered expression of inflammatory cytokines in peripheral blood mononuclear cells (PBMCs), with a distinctive downregulation of IL-6 and upregulation of IFNγ mRNA expression levels. Altogether, our findings indicate that cancer not only attenuates the inflammatory state in COVID-19 patients but also contributes to weakening their precarious metabolic state by interfering with NAD+-dependent immune homeostasis

    Practice patterns and 90-day treatment-related morbidity in early-stage cervical cancer

    Get PDF
    To evaluate the impact of the Laparoscopic Approach to Cervical Cancer (LACC) Trial on patterns of care and surgery-related morbidity in early-stage cervical cancer

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Evolution and Targeting of Myeloid Suppressor Cells in Cancer: A Translational Perspective

    No full text
    In recent years, the immune system has emerged as a critical regulator of tumor development, progression and dissemination. Advanced therapeutic approaches targeting immune cells are currently under clinical use and improvement for the treatment of patients affected by advanced malignancies. Among these, anti-PD1/PD-L1 and anti-CTLA4 immune checkpoint inhibitors (ICIs) are the most effective immunotherapeutic drugs at present. In spite of these advances, great variability in responses to therapy exists among patients, probably due to the heterogeneity of both cancer cells and immune responses, which manifest in diverse forms in the tumor microenvironment (TME). The variability of the immune profile within TME and its prognostic significance largely depend on the frequency of the infiltrating myeloid cells, which often represent the predominant population, characterized by high phenotypic heterogeneity. The generation of heterogeneous myeloid populations endowed with tumor-promoting activities is typically promoted by growing tumors, indicating the sequential levels of myeloid reprogramming as possible antitumor targets. This work reviews the current knowledge on the events governing protumoral myelopoiesis, analyzing the mechanisms that drive the expansion of major myeloid subsets, as well as their functional properties, and highlighting recent translational strategies for clinical developments
    corecore