146 research outputs found

    Molecular structure and early age behaviour of metakaolin geopolymers : insights from nanoscale modelling

    Get PDF
    PhD ThesisGrowing demand for sustainable building materials is driving research in alternative cements, but their applicability in the construction field is still limited by an insufficient understanding of their durability. Geopolymers belong to this group of materials, since their production involves less carbon dioxide emissions than traditional cement. Geopolymers are aluminosilicate raw materials (e.g. metakaolin) activated with an alkali solution. Their binding phase commonly consists in sodium-alumino-silicate hydrate (N-A-S-H), which provides strength at the macroscale. Hence, understanding how mechanical properties emerge during the formation of N-A-S-H is crucial to control the macroscale performance of geopolymers. This dissertation discusses the results obtained with an integrated approach combining nanoscale modelling and experiments to clarify chemo-mechanical behaviour of N-A-S-H, especially at early age. This work delivers two main contributions. First, it presents a new molecular model of N-A-S-H, obtained by atomistic simulations. The uniqueness of this model lie in its ability to capture both amorphous and crystalline features displayed by literature data, whereas the other existing models only focus on either amorphous or crystalline structures, hence not fully explaining experimental observations. Second, this work quantifies for the first time the volumetric changes of geopolymers in the first stages of their formation, addressing the current lack of literature data on the so-called ”chemical shrinkage” of geopolymers. The results in this work, actually, indicate that geopolymers undergo chemical expansion, and not shrinkage, and a theoretical model is proposed to explain this uncommon behaviour. Finally, preliminary considerations on understanding ageing in geopolymers are presented. In particular, a mesoscale model based on aggregated nanoparticles is discussed, together with long term experiments on drying shrinkage and creep behaviour. Overall, this dissertation provides insights into the development of mechanical properties in geopolymers at early age, addressing some gaps whose limited understanding is a current barrier for the standardisation and commercialisation of geopolymers

    Androgenetic alopecia: a review

    Get PDF
    Purpose Androgenetic alopecia, commonly known as male pattern baldness, is the most common type of progressive hair loss disorder in men. The aim of this paper is to review recent advances in understanding the pathophysiology and molecular mechanism of androgenetic alopecia. Methods Using the PubMed database, we conducted a systematic review of the literature, selecting studies pub- lished from 1916 to 2016. Results The occurrence and development of androgenetic alopecia depends on the interaction of endocrine factors and genetic predisposition. Androgenetic alopecia is character- ized by progressive hair follicular miniaturization, caused by the actions of androgens on the epithelial cells of genetically susceptible hair follicles in androgen-dependent areas. Although the exact pathogenesis of androgenetic alopecia remains to be clari fi ed, research has shown that it is a polygenetic condition. Numerous studies have unequi- vocally identi fi ed two major genetic risk loci for androge- netic alopecia, on the X-chromosome AR ⁄ EDA2R locus and the chromosome 20p11 locus. Conclusions Candidate gene and genome-wide association studies have reported that single-nucleotide polymorphisms at different genomic loci are associated with androgenetic alopecia development. A number of genes determine the predisposition for androgenetic alopecia in a polygenic fashion. However, further studies are needed before the specific genetic factors of this polygenic condition can be fully explaine

    Molecular model of geopolymers with increasing level of disorder in the atomic structure

    Get PDF
    Concrete is the most used building material on Earth, but the production of its main binding component, cement, is responsible for 8% of worldwide CO2 emissions. A greener alternative cementitious material is provided by geopolymers, which can be synthetized from calcined clays and industrial by-products. A key issue, that limits the applicability of geopolymers in the construction sector, is an insufficient understanding of the relationship between their chemistry and development of long-term properties. Reducing these uncertainties requires an integrated approach combining modelling and experimentation. The binding phase of geopolymers often consists of sodium-alumino-silicate-hydrates (N-A-S-H), obtained through the reaction of a sodium silicate solution with an alumino-silicate source. Theoretical models describe this structure at the molecular scale as “pseudo-crystalline” [1] but, the existing models, based on solely amorphous or crystalline structures, are not always in agreement with this definition and with experimental results. For this reason, a defective crystalline structure is proposed here as a baseline geopolymer cell, featuring both amorphous and crystalline attributes (Figure 1). This new structure is created by creating vacancies in a sodalite crystalline cage, which is then stress-relaxed and reorganised to achieve full polymerisation of Al and Si tetrahedra while respecting the Loewenstein\u27s principle. Results are compared with experimental data and with other simulation results for amorphous and crystalline molecular models, showing that the newly proposed structures better capture important structural features with impact on mechanical properties, reconciling experiments with the “pseudo-crystalline” model. Specifically, the comparison with the experiments addresses the effect of Si:Al molar ratio and water content on a range of structural and mechanical properties such as skeletal density, ring structure, bong-angle distribution, X-ray diffraction (Figure 1) and X-ray pair distribution function. The simulation results confirm the necessity of a defective structure able to detect both order and disorder in geopolymers experiments. The proposed defective molecular model provides a starting point for the multiscale understanding of geopolymer cements, as well as for investigating the molecular interactions between geopolymer cements and various adsorbates, e.g. for applications in environmental engineering and nuclear engineering. Please click Additional Files below to see the full abstract

    Influence of the killing method of the black soldier fly on its lipid composition

    Get PDF
    Black soldier fly (BSF, Hermetia illucens) represents a valuable source of biomolecules and it also constitutes an economic way to valorise residual biomasses. BSF prepupae contain high amounts of lipids (37% DM basis). The present investigation aimed at studying the composition of BSF lipids and the effect of killing/storage on their quality. The main fatty acid was lauric acid, sterols were represented primarily by beta-sitosterol and campesterol. Global fatty acid and sterol profiles, determined by GC–MS, were only slightly affected by the killing procedure, while lipid classes distribution, determined by 1H NMR, strongly changed. Prepupae killed by freezing showed a drastic reduction of acylglycerols during storage and a relevant release of free fatty acids, likely due to activation of lipases. On the contrary, prepupae killed by blanching have a stable lipid fraction constituted mainly by triacylglycerols. Therefore, killing procedure strongly influences BSF oil composition and the potential applications

    Correction: Recent advances in the synthesis of analogues of phytohormones strigolactones with ring-closing metathesis as a key step

    Get PDF
    Correction for 'Recent advances in the synthesis of analogues of phytohormones strigolactones with ring-closing metathesis as a key step' by Chiara Lombardi, et al., Org. Biomol. Chem., 2017, DOI: 10.1039/c7ob01917c

    Persistent neutrophil to lymphocyte ratio >3 during treatment with enzalutamide and clinical outcome in patients with castration-resistant prostate cancer

    Get PDF
    The baseline value of neutrophil to lymphocyte ratio (NLR) has been found to be prognostic in patients with metastatic castration resistant prostate cancer (CRPC). We evaluated the impact of baseline NLR and its change in patients receiving enzalutamide. We included consecutive metastatic CRPC patients treated with enzalutamide after docetaxel and studies the change of NLR (>3 vs ≀3) after week 4 and 12 weeks. Progression-free survival (PFS), overall survival (OS) and their 95% Confidence Intervals (95% CI) were estimated by the Kaplan-Meier method and compared with the log-rank test. The impact of NLR on PFS and OS was evaluated by Cox regression analyses and on prostate-specific antigen response rates (PSA RR; PSA decline >50%) were evaluated by binary logistic regression. Data collected on 193 patients from 9 centers were evaluated. Median age was 73.1 years (range, 42.8–90.7). The median baseline NLR was 3.2. The median PFS was 3.2 months (95% CI = 2.7–4.2) in patients with baseline NLR >3 and 7.4 months (95% CI = 5.5–9.7) in those with NLR ≀3, p < 0.0001. The median OS was 10.4 months (95% CI = 6.5–14.9) in patients with baseline NLR >3 and 16.9 months (95% CI = 11.2–20.9) in those with baseline NLR ≀3, p < 0.0001. In multivariate analysis, changes in NLR at 4 weeks were significant predictors of both PFS [hazard ratio (HR) 1.24, 95% confidence interval (95% CI) 1.07–1.42, p = 0.003, and OS (HR 1.29, 95% CI 1.10–1.51, p = 0.001. A persistent NLR >3 during treatment with enzalutamide seems to have both prognostic and predictive value in CRPC patients

    Androgen modulation of pro-inflammatory and antiinflammatory cytokines during preadipocyte differentiation

    Get PDF
    Background: Macrophages and adipocytes contribute to release of cytokines resulting in the chronic inflammatory profile of the metabolic syndrome. The local increase of proinflammatory cytokines impairs adipogenesis, resulting in formation of dysfunctional adipocytes that are unable to store and handle lipids. The altered lipid fluxes in/from adipocytes affect whole-body metabolism. We investigated the role of androgens on adipocyte-derived proinflammatory and anti-inflammatory cytokines during preadipocyte differentiation. Materials and methods: Various differentiation methods were used to obtain full conversion of 3T3-L1 into mature adipocytes. The degree of adipocyte conversion in the presence/absence of dihydrotestosterone (DHT) was analyzed by measuring intracellular triglycerides (Oil Red O staining). The effects of DHT administration on interleukin 1Β (IL-1Β), IL-2, IL-6, IL-10, IL-12, interferon Îł (IFNΓ) and tumor necrosis factor α (TNFα) secretion was measured at days 0, 4, 6 and 8 of differentiation using the SearchLight multiplex protein array. Results: DHT regulates a number of cytokines in committed and mature 3T3-L1 adipocytes. IL-1Β and TNFα were readily suppressed at the very early stages of differentiation. IFNΓ release was inhibited at day 4, but the effect was no longer detectable on day 8. IL-6 and IL-12 were significantly reduced at day 8 of differentiation. Conversely, the differentiation-dependent increase of IL-2 and IL-10 was further stimulated by DHT since day 0. Conclusions: We provide evidence that androgens promote an anti-inflammatory profile that parallels the acquisition of a functional adipocyte phenotype. The crosstalk between androgens, adipocyte-derived mediators of inflammation and intracellular lipid fluxes could have profound implications on metabolism of men with obesity and metabolic syndrome. © 2010, by Walter de Gruyter Berlin New York. All rights reserved

    Erratum: Antibodies from multiple sclerosis patients preferentially recognize hyperglucosylated adhesin of non-typeable Haemophilus influenzae

    Get PDF
    Scientific Reports 6: Article number: 39430; published online: 23 December 2016; updated: 22 March 2017. The original version of this Article contained typographical errors in the Abstract. ‘In autoimmune diseases, there have been proposals that exogenous “molecular triggers”, i.e., specific this should be ‘non-self antigens’ accompanying infectious agents, might disrupt control of the adaptive immune system resulting in serious pathologies’.</jats:p

    Antibodies from multiple sclerosis patients preferentially recognize hyperglucosylated adhesin of non-typeable Haemophilus influenzae

    Get PDF
    In autoimmune diseases, there have been proposals that exogenous "molecular triggers", i.e., specific this should be 'non-self antigens' accompanying infectious agents, might disrupt control of the adaptive immune system resulting in serious pathologies. The etiology of the multiple sclerosis (MS) remains unclear. However, epidemiologic data suggest that exposure to infectious agents may be associated with increased MS risk and progression may be linked to exogenous, bacterially-derived, antigenic molecules, mimicking mammalian cell surface glycoconjugates triggering autoimmune responses. Previously, antibodies specific to a gluco-asparagine (N-Glc) glycopeptide, CSF114(N-Glc), were identified in sera of an MS patient subpopulation. Since the human glycoproteome repertoire lacks this uniquely modified amino acid, we turned our attention to bacteria, i.e., Haemophilus influenzae, expressing cell-surface adhesins including N-Glc, to establish a connection between H. influenzae infection and MS. We exploited the biosynthetic machinery from the opportunistic pathogen H. influenzae (and the homologous enzymes from A. pleuropneumoniae) to produce a unique set of defined glucosylated adhesin proteins. Interestingly we revealed that a hyperglucosylated protein domain, based on the cell-surface adhesin HMW1A, is preferentially recognized by antibodies from sera of an MS patient subpopulation. In conclusion the hyperglucosylated adhesin is the first example of an N-glucosylated native antigen that can be considered a relevant candidate for triggering pathogenic antibodies in MS
    • 

    corecore