33 research outputs found

    Feasibility and early clinical assessment of flattening filter free (FFF) based stereotactic body radiotherapy (SBRT) treatments

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>To test feasibility and safety of clinical usage of Flattening Filter Free (FFF) beams for delivering ablative stereotactic body radiation therapy (SBRT) doses to various tumor sites, by means of Varian TrueBeamℱ (Varian Medical Systems).</p> <p>Methods and Materials</p> <p>Seventy patients were treated with SBRT and FFF: 51 lesions were in the thorax (48 patients),10 in the liver, 9 in isolated abdominal lymph node, adrenal gland or pancreas. Doses ranged from 32 to 75 Gy, depending on the anatomical site and the volume of the lesion to irradiate. Lung lesions were treated with cumulative doses of 32 or 48 Gy, delivered in 4 consecutive fractions. The liver patients were treated in 3 fractions with total dose of 75 Gy. The isolated lymph nodes were irradiated in 6 fractions with doses of 45 Gy. The inclusion criteria were the presence of isolated node, or few lymph nodes in the same lymph node region, in absence of other active sites of cancer disease before the SBRT treatment.</p> <p>Results</p> <p>All 70 patients completed the treatment. The minimum follow-up was 3 months. Six cases of acute toxicities were recorded (2 Grade2 and 2 Grade3 in lung and 2 Grade2 in abdomen). No patient experienced acute toxicity greater than Grade3. No other types or grades of toxicities were observed at clinical evaluation visits.</p> <p>Conclusions</p> <p>This study showed that, with respect to acute toxicity, SBRT with FFF beams showed to be a feasible technique in 70 consecutive patients with various primary and metastatic lesions in the body.</p

    Evaluation of a synthetic single-crystal diamond detector for relative dosimetry on the Leksell Gamma Knife Perfexion radiosurgery system

    Get PDF
    Purpose: To evaluate the new commercial PTW-60019 synthetic single-crystal microDiamond detector (PTW, Freiburg, Germany) for relative dosimetry measurements on a clinical Leksell Gamma Knife Perfexion radiosurgery system. Methods: Detector output ratios (DORs) for 4 and 8 mm beams were measured using a micro- Diamond (PTW-60019), a stereotactic unshielded diode [IBA stereotactic field detector (SFD)], a shielded diode (IBA photon field detector), and GafChromic EBT3 films. Both parallel and transversal acquisition directions were considered for PTW-60019 measurements. Measured DORs were compared to the new output factor reference values for Gamma Knife Perfexion (0.814 and 0.900 for 4 and 8 mm, respectively). Profiles in the three directions were also measured for the 4 mm beam to evaluate full width at half maximum (FWHM) and penumbra and to compare them with the corresponding Leksell GammaPlan profiles. Results: FWHM and penumbra for PTW-60019 differed from the calculated values by less than 0.2 and 0.3 mm, for the parallel and transversal acquisitions, respectively. GafChromic films showed FWHM and penumbra within 0.1 mm. The output ratio obtained with the PTW-60019 for the 4 mm field was 1.6% greater in transverse direction compared to the nominal value. Comparable differences up to 0.8% and 1.0% for, respectively, GafChromic films and SFD were found. Conclusions: The microDiamond PTW-60019 is a suitable detector for commissioning and routine use of Gamma Knife with good agreement of both DORs and profiles in the three directions

    Stereotactic body radiation therapy for liver tumours using flattening filter free beam: dosimetric and technical considerations

    Get PDF
    Purpose: To report the initial institute experience in terms of dosimetric and technical aspects in stereotactic body radiation therapy (SBRT) delivered using flattening filter free (FFF) beam in patients with liver lesions.Methods and Materials: From October 2010 to September 2011, 55 consecutive patients with 73 primary or metastatic hepatic lesions were treated with SBRT on TrueBeam using FFF beam and RapidArc technique. Clinical target volume (CTV) was defined on multi-phase CT scans, PET/CT, MRI, and 4D-CT. Dose prescription was 75 Gy in 3 fractions to planning target volume (PTV). Constraints for organs at risk were: 700 cc of liver free from the 15 Gy isodose, D max < 21 Gy for stomach and duodenum, D max < 30 Gy for heart, D 0.1 cc < 18 Gy for spinal cord, V 15 Gy < 35% for kidneys. The dose was downscaled in cases of not full achievement of dose constraints. Daily cone beam CT (CBCT) was performed.Results: Forty-three patients with a single lesion, nine with two lesions and three with three lesions were treated with this protocol. Target and organs at risk objectives were met for all patients. Mean delivery time was 2.8 ± 1.0 min. Pre-treatment plan verification resulted in a Gamma Agreement Index of 98.6 ± 0.8%. Mean on-line co-registration shift of the daily CBCT to the simulation CT were: -0.08, 0.05 and -0.02 cm with standard deviations of 0.33, 0.39 and 0.55 cm in, vertical, longitudinal and lateral directions respectively.Conclusions: SBRT for liver targets delivered by means of FFF resulted to be feasible with short beam on time. © 2012 Mancosu et al; licensee BioMed Central Ltd

    Dataset related to article "Knowledge-based DVH estimation and optimization for breast VMAT plans with and without avoidance sectors"

    No full text
    &lt;p&gt;This record contains raw data related to article "Knowledge-based DVH estimation and optimization for breast VMAT plans with and without avoidance sectors"&lt;/p&gt;&lt;p&gt;&lt;strong&gt;&nbsp;Abstract&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;Background: To analyze RapidPlan knowledge-based models for DVH estimation of organs at risk from breast cancer VMAT plans presenting arc sectors en-face to the breast with zero dose rate, feature imposed during the optimization phase (avoidance sectors AS).&lt;/p&gt;&lt;p&gt;Methods: CT datasets of twenty left breast patients in deep-inspiration breath-hold were selected. Two VMAT plans, PartArc and AvoidArc, were manually generated with double arcs from ~ 300 to ~ 160°, with the second having an AS en-face to the breast to avoid contralateral breast and lung direct irradiation. Two RapidPlan models were generated from the two plan sets. The two models were evaluated in a closed loop to assess the model performance on plans where the AS were selected or not in the optimization.&lt;/p&gt;&lt;p&gt;Results: The PartArc plans model estimated DVHs comparable with the original plans. The AvoidArc plans model estimated a DVH pattern with two steps for the contralateral structures when the plan does not contain the AS selected in the optimization phase. This feature produced mean doses of the contralateral breast, averaged over all patients, of 0.4 ± 0.1 Gy, 0.6 ± 0.2 Gy, and 1.1 ± 0.2 Gy for the AvoidArc plan, AvoidArc model estimation, RapidPlan generated plan, respectively. The same figures for the contralateral lung were 0.3 ± 0.1 Gy, 1.6 ± 0.6 Gy, and 1.2 ± 0.5 Gy. The reason was found in the possible incorrect information extracted from the model training plans due to the lack of knowledge about the AS. Conversely, in the case of plans with AS set in the optimization generated with the same AvoidArc model, the estimated and resulting DVHs were comparable. Whenever the AvoidArc model was used to generate DVH estimation for a plan with AS, while the optimization was made on the plan without the AS, the optimizer evidentiated the limitation of a minimum dose rate of 0.2 MU/°, resulting in an increased dose to the contralateral structures respect to the estimation.&lt;/p&gt;&lt;p&gt;Conclusions: The RapidPlan models for breast planning with VMAT can properly estimate organ at risk DVH. Attention has to be paid to the plan selection and usage for model training in the presence of avoidance sectors.&lt;/p&gt;&lt;p&gt;&nbsp;&lt;/p&gt

    Performance of a Knowledge-Based Model for Optimization of Volumetric Modulated Arc Therapy Plans for Single and Bilateral Breast Irradiation.

    No full text
    To evaluate the performance of a model-based optimisation process for volumetric modulated arc therapy, VMAT, applied to whole breast irradiation.A set of 150 VMAT dose plans with simultaneous integrated boost were selected to train a model for the prediction of dose-volume constraints. The dosimetric validation was done on different groups of patients from three institutes for single (50 cases) and bilateral breast (20 cases).Quantitative improvements were observed between the model-based and the reference plans, particularly for heart dose. Of 460 analysed dose-volume objectives, 13% of the clinical plans failed to meet the constraints while the respective model-based plans succeeded. Only in 5 cases did the reference plans pass while the respective model-based failed the criteria. For the bilateral breast analysis, the model-based plans resulted in superior or equivalent dose distributions to the reference plans in 96% of the cases.Plans optimised using a knowledge-based model to determine the dose-volume constraints showed dosimetric improvements when compared to earlier approved clinical plans. The model was applicable to patients from different centres for both single and bilateral breast irradiation. The data suggests that the dose-volume constraint optimisation can be effectively automated with the new engine and could encourage its application to clinical practice

    Radiomics based analysis to predict local control and survival in hepatocellular carcinoma patients treated with volumetric modulated arc therapy

    No full text
    Abstract Background To appraise the ability of a radiomics based analysis to predict local response and overall survival for patients with hepatocellular carcinoma. Methods A set of 138 consecutive patients (112 males and 26 females, median age 66 years) presented with Barcelona Clinic Liver Cancer (BCLC) stage A to C were retrospectively studied. For a subset of these patients (106) complete information about treatment outcome, namely local control, was available. Radiomic features were computed for the clinical target volume. A total of 35 features were extracted and analyzed. Univariate analysis was used to identify clinical and radiomics significant features. Multivariate models by Cox-regression hazards model were built for local control and survival outcome. Models were evaluated by area under the curve (AUC) of receiver operating characteristic (ROC) curve. For the LC analysis, two models selecting two groups of uncorrelated features were analyzes while one single model was built for the OS analysis. Results The univariate analysis lead to the identification of 15 significant radiomics features but the analysis of cross correlation showed several cross related covariates. The un-correlated variables were used to build two separate models; both resulted into a single significant radiomic covariate: model-1: energy p < 0.05, AUC of ROC 0.6659, C.I.: 0.5585–0.7732; model-2: GLNU p < 0.05, AUC 0.6396, C.I.:0.5266–0.7526. The univariate analysis for covariates significant with respect to local control resulted in 9 clinical and 13 radiomics features with multiple and complex cross-correlations. After elastic net regularization, the most significant covariates were compacity and BCLC stage, with only compacity significant to Cox model fitting (Cox model likelihood ratio test p < 0.0001, compacity p < 0.00001; AUC of the model is 0.8014 (C.I. = 0.7232–0.8797)). Conclusion A robust radiomic signature, made by one single feature was finally identified. A validation phases, based on independent set of patients is scheduled to be performed to confirm the results
    corecore