18 research outputs found

    Methylation levels of the "long interspersed nucleotide element-1" repetitive sequences predict survival of melanoma patients

    Get PDF
    Background\ud The prognosis of cutaneous melanoma (CM) differs for patients with identical clinico-pathological stage, and no molecular markers discriminating the prognosis of stage III individuals have been established. Genome-wide alterations in DNA methylation are a common event in cancer. This study aimed to define the prognostic value of genomic DNA methylation levels in stage III CM patients.\ud \ud Methods\ud Overall level of genomic DNA methylation was measured using bisulfite pyrosequencing at three CpG sites (CpG1, CpG2, CpG3) of the Long Interspersed Nucleotide Element-1 (LINE-1) sequences in short-term CM cultures from 42 stage IIIC patients. The impact of LINE-1 methylation on overall survival (OS) was assessed using Cox regression and Kaplan-Meier analysis.\ud \ud Results\ud Hypomethylation (i.e., methylation below median) at CpG2 and CpG3 sites significantly associated with improved prognosis of CM, CpG3 showing the strongest association. Patients with hypomethylated CpG3 had increased OS (P = 0.01, log-rank = 6.39) by Kaplan-Meyer analysis. Median OS of patients with hypomethylated or hypermethylated CpG3 were 31.9 and 11.5 months, respectively. The 5 year OS for patients with hypomethylated CpG3 was 48% compared to 7% for patients with hypermethylated sequences. Among the variables examined by Cox regression analysis, LINE-1 methylation at CpG2 and CpG3 was the only predictor of OS (Hazard Ratio = 2.63, for hypermethylated CpG3; 95% Confidence Interval: 1.21-5.69; P = 0.01).\ud \ud Conclusion\ud LINE-1 methylation is identified as a molecular marker of prognosis for CM patients in stage IIIC. Evaluation of LINE-1 promises to represent a key tool for driving the most appropriate clinical management of stage III CM patients

    Epigenetic Immune Remodeling of Mesothelioma Cells: A New Strategy to Improve the Efficacy of Immunotherapy

    Get PDF
    Malignant pleural mesothelioma (MPM) is an aggressive malignancy with a severe progno- sis, and with a long-standing need for more effective therapeutic approaches. However, treatment with immune checkpoint inhibitors is becoming an increasingly effective strategy for MPM pa- tients. In this scenario, epigenetic modifications may negatively regulate the interplay between immune and malignant cells within the tumor microenvironment, thus contributing to the highly immunosuppressive contexture of MPM that may limit the efficacy of immunotherapy. Aiming to further improve prospectively the clinical efficacy of immunotherapeutic approaches in MPM, we investigated the immunomodulatory potential of different classes of epigenetic drugs (i.e., DNA hypomethylating agent (DHA) guadecitabine, histone deacetylase inhibitors VPA and SAHA, or EZH2 inhibitors EPZ-6438) in epithelioid, biphasic, and sarcomatoid MPM cell lines, by cytofluo- rimetric and real-time PCR analyses. We also characterized the effects of the DHA, guadecitabine, on the gene expression profiles (GEP) of the investigated MPM cell lines by the nCounter platform. Among investigated drugs, exposure of MPM cells to guadecitabine, either alone or in combination with VPA, SAHA and EPZ-6438 demonstrated to be the main driver of the induction/upregulation of immune molecules functionally crucial in host-tumor interaction (i.e., HLA class I, ICAM-1 and cancer testis antigens) in all three MPM subtypes investigated. Additionally, GEP demonstrated that treatment with guadecitabine led to the activation of genes involved in several immune-related func- tional classes mainly in the sarcomatoid subtype. Furthermore, among investigated MPM subtypes, DHA-induced CDH1 expression that contributes to restoring the epithelial phenotype was highest in sarcomatoid cells. Altogether, our results contribute to providing the rationale to develop new epigenetically-based immunotherapeutic approaches for MPM patients, potentially tailored to the specific histologic subtypes

    Epigenetics of human cutaneous melanoma: setting the stage for new therapeutic strategies

    Get PDF
    Cutaneous melanoma is a very aggressive neoplasia of melanocytic origin with constantly growing incidence and mortality rates world-wide. Epigenetic modifications (i.e., alterations of genomic DNA methylation patterns, of post-translational modifications of histones, and of microRNA profiles) have been recently identified as playing an important role in melanoma development and progression by affecting key cellular pathways such as cell cycle regulation, cell signalling, differentiation, DNA repair, apoptosis, invasion and immune recognition. In this scenario, pharmacologic inhibition of DNA methyltransferases and/or of histone deacetylases were demonstrated to efficiently restore the expression of aberrantly-silenced genes, thus re-establishing pathway functions. In light of the pleiotropic activities of epigenetic drugs, their use alone or in combination therapies is being strongly suggested, and a particular clinical benefit might be expected from their synergistic activities with chemo-, radio-, and immuno-therapeutic approaches in melanoma patients. On this path, an important improvement would possibly derive from the development of new generation epigenetic drugs characterized by much reduced systemic toxicities, higher bioavailability, and more specific epigenetic effects

    Innova-[Form]azione

    No full text
    L\u2019innovazione nell\u2019esperienza di formazione dei dottorandi di Tecnologia dell\u2019Architettura

    Mite infestation during development alters the in-hive behaviour of adult honeybees

    No full text
    International audienceHoneybee colonies (Apis mellifera) host a number of parasites, among which the mite Varroa destructor has been implicated in colony losses recorded around the world in recent years. Although many studies have been carried out on the direct and indirect damage caused by the mite to its host, the possible influence of mite infestation on the in-hive behaviour of honeybees has received little attention so far; moreover, to our knowledge, no behavioural study has been performed on adult bees infested during the pupal stage, which is when the mite causes most of its detrimental effects. In order to assess any possible consequence of infestation on the in-hive behaviour of honeybees, we carried out detailed observations on adult bees artificially infested during the pupal stage. We recorded a higher proportion of inactive bees among the infested ones; moreover, we observed that infested bees are less involved in tending larvae and dealing with hive duties compared to their uninfested mates. These results allow to draw some hypotheses which could be tested using the infestation method presented here

    Loss of Spry1 reduces growth of BRAFV600-mutant cutaneous melanoma and improves response to targeted therapy

    No full text
    Mitogen-activated protein kinase (MAPK) pathway activation is a central step in BRAFV600-mutant cutaneous melanoma (CM) pathogenesis. In the last years, Spry1 has been frequently described as an upstream regulator of MAPK signaling pathway. However, its specific role in BRAFV600-mutant CM is still poorly defined. Here, we report that Spry1 knockdown (Spry1KO) in three BRAFV600-mutant CM cell lines markedly induced cell cycle arrest and apoptosis, repressed cell proliferation in vitro, and impaired tumor growth in vivo. Furthermore, our findings indicated that Spry1KO reduced the expression of several markers of epithelial-mesenchymal transition, such as MMP-2 both in vitro and in vivo. These effects were associated with a sustained and deleterious phosphorylation of ERK1/2. In addition, p38 activation along with an increase in basal ROS levels were found in Spry1KO clones compared to parental CM cell lines, suggesting that BRAFV600-mutant CM may restrain the activity of Spry1 to avoid oncogenic stress and to enable tumor growth. Consistent with this hypothesis, treatment with the BRAF inhibitor (BRAFi) vemurafenib down-regulated Spry1 levels in parental CM cell lines, indicating that Spry1 expression is sustained by the MAPK/ERK signaling pathway in a positive feedback loop that safeguards cells from the potentially toxic effects of ERK1/2 hyperactivation. Disruption of this feedback loop rendered Spry1KO cells more susceptible to apoptosis and markedly improved response to BRAFi both in vitro and in vivo, as a consequence of the detrimental effect of ERK1/2 hyperactivation observed upon Spry1 abrogation. Therefore, targeting Spry1 might offer a treatment strategy for BRAFV600-mutant CM by inducing the toxic effects of ERK-mediated signaling

    Epigenetic remodeling to improve the efficacy of immunotherapy in human glioblastoma: pre-clinical evidence for development of new immunotherapy approaches

    No full text
    Abstract Background Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor, that is refractory to standard treatment and to immunotherapy with immune-checkpoint inhibitors (ICI). Noteworthy, melanoma brain metastases (MM-BM), that share the same niche as GBM, frequently respond to current ICI therapies. Epigenetic modifications regulate GBM cellular proliferation, invasion, and prognosis and may negatively regulate the cross-talk between malignant cells and immune cells in the tumor milieu, likely contributing to limit the efficacy of ICI therapy of GBM. Thus, manipulating the tumor epigenome can be considered a therapeutic opportunity in GBM. Methods Microarray transcriptional and methylation profiles, followed by gene set enrichment and IPA analyses, were performed to study the differences in the constitutive expression profiles of GBM vs MM-BM cells, compared to the extracranial MM cells and to investigate the modulatory effects of the DNA hypomethylating agent (DHA) guadecitabine among the different tumor cells. The prognostic relevance of DHA-modulated genes was tested by Cox analysis in a TCGA GBM patients’ cohort. Results The most striking differences between GBM and MM-BM cells were found to be the enrichment of biological processes associated with tumor growth, invasion, and extravasation with the inhibition of MHC class II antigen processing/presentation in GBM cells. Treatment with guadecitabine reduced these biological differences, shaping GBM cells towards a more immunogenic phenotype. Indeed, in GBM cells, promoter hypomethylation by guadecitabine led to the up-regulation of genes mainly associated with activation, proliferation, and migration of T and B cells and with MHC class II antigen processing/presentation. Among DHA-modulated genes in GBM, 7.6% showed a significant prognostic relevance. Moreover, a large set of immune-related upstream-regulators (URs) were commonly modulated by DHA in GBM, MM-BM, and MM cells: DHA-activated URs enriched for biological processes mainly involved in the regulation of cytokines and chemokines production, inflammatory response, and in Type I/II/III IFN-mediated signaling; conversely, DHA-inhibited URs were involved in metabolic and proliferative pathways. Conclusions Epigenetic remodeling by guadecitabine represents a promising strategy to increase the efficacy of cancer immunotherapy of GBM, supporting the rationale to develop new epigenetic-based immunotherapeutic approaches for the treatment of this still highly deadly disease
    corecore