118 research outputs found

    Phylogenetic Incongruence in E. coli O104: Understanding the Evolutionary Relationships of Emerging Pathogens in the Face of Homologous Recombination

    Get PDF
    Escherichia coli O104:H4 was identified as an emerging pathogen during the spring and summer of 2011 and was responsible for a widespread outbreak that resulted in the deaths of 50 people and sickened over 4075. Traditional phenotypic and genotypic assays, such as serotyping, pulsed field gel electrophoresis (PFGE), and multilocus sequence typing (MLST), permit identification and classification of bacterial pathogens, but cannot accurately resolve relationships among genotypically similar but pathotypically different isolates. To understand the evolutionary origins of E. coli O104:H4, we sequenced two strains isolated in Ontario, Canada. One was epidemiologically linked to the 2011 outbreak, and the second, unrelated isolate, was obtained in 2010. MLST analysis indicated that both isolates are of the same sequence type (ST678), but whole-genome sequencing revealed differences in chromosomal and plasmid content. Through comprehensive phylogenetic analysis of five O104:H4 ST678 genomes, we identified 167 genes in three gene clusters that have undergone homologous recombination with distantly related E. coli strains. These recombination events have resulted in unexpectedly high sequence diversity within the same sequence type. Failure to recognize or adjust for homologous recombination can result in phylogenetic incongruence. Understanding the extent of homologous recombination among different strains of the same sequence type may explain the pathotypic differences between the ON2010 and ON2011 strains and help shed new light on the emergence of this new pathogen

    Respiratory Infection in Institutions during Early Stages of Pandemic (H1N1) 2009, Canada

    Get PDF
    Outbreaks of respiratory infection in institutions in Ontario, Canada were studied from April 20 to June 12, 2009, during the early stages of the emergence of influenza A pandemic (H1N1) 2009. Despite widespread presence of influenza in the general population, only 2 of 83 outbreaks evaluated by molecular methods were associated with pandemic (H1N1) 2009

    Pertactin-negative Bordetella pertussis strains in Canada: characterization of a dozen isolates based on a survey of 224 samples collected in different parts of the country over the last 20 years

    Get PDF
    SummaryObjectiveTo detect and characterize pertactin-negative Bordetella pertussis in Canada, especially for isolates collected in recent years.MethodsA total of 224 isolates from the years 1994–2013 were screened by Western immuno-blot for expression of pertactin. Pertactin-negative isolates were characterized by serotyping, pulsed-field gel electrophoresis (PFGE), and genotyping of their pertactin, fimbriae 3, pertussis toxin subunit 1, and pertussis toxin gene promoter region, as well as the complete sequence of the pertactin gene.ResultsTwelve isolates were pertactin-negative, giving an overall prevalence of 5.4%. However, no such isolate was found prior to 2011 and 17.8% of 62 isolates examined in 2012 were pertactin-negative. Ten pertactin-negative isolates contained a significant mutation in their pertactin (prn) genes. IS481 was found in the prn genes of eight isolates, while a single point mutation occurred either in the coding region (resulting in a premature stop codon) or in the promoter region (preventing gene transcription) in two other isolates. PFGE analysis also showed multiple profiles suggesting that several independent genetic events might have led to the emergence of these pertactin-negative strains rather than expansion of a single clone.ConclusionsAs reported elsewhere, pertactin-negative B. pertussis has emerged in Canada in recent years, notably in 2012. This coincided with an increase in pertussis activity in Canada. A further systematic study with a larger geographical representative sample is required to determine how these vaccine-negative strains may contribute to the overall changing epidemiology of pertussis in Canada

    Limited genetic diversity in Salmonella enterica Serovar Enteritidis PT13

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Salmonella enterica </it>serovar Enteritidis has emerged as a significant foodborne pathogen throughout the world and is commonly characterized by phage typing. In Canada phage types (PT) 4, 8 and 13 predominate and in 2005 a large foodborne PT13 outbreak occurred in the province of Ontario. The ability to link strains during this outbreak was difficult due to the apparent clonality of PT13 isolates in Canada, as there was a single dominant pulsed-field gel electrophoresis (PFGE) profile amongst epidemiologically linked human and food isolates as well as concurrent sporadic strains. The aim of this study was to perform comparative genomic hybridization (CGH), DNA sequence-based typing (SBT) genomic analyses, plasmid analyses, and automated repetitive sequence-based PCR (rep-PCR) to identify epidemiologically significant traits capable of subtyping <it>S</it>. Enteritidis PT13.</p> <p>Results</p> <p>CGH using an oligonucleotide array based upon chromosomal coding sequences of <it>S. enterica </it>serovar Typhimurium strain LT2 and the <it>Salmonella </it>genomic island 1 successfully determined major genetic differences between <it>S</it>. Typhimurium and <it>S</it>. Enteritidis PT13, but no significant strain-to-strain differences were observed between <it>S</it>. Enteritidis PT13 isolates. Individual loci (<it>safA </it>and <it>fliC</it>) that were identified as potentially divergent in the CGH data set were sequenced in a panel of <it>S</it>. Enteritidis strains, and no differences were detected between the PT13 strains. Additional sequence-based typing was performed at the <it>fimA</it>, <it>mdh</it>, <it>manB</it>, <it>cyaA</it>, <it>citT</it>, <it>caiC</it>, <it>dmsA</it>, <it>ratA </it>and STM0660 loci. Similarly, no diversity was observed amongst PT13 strains. Variation in plasmid content between PT13 strains was observed, but macrorestriction with B<it>gl</it>II did not identify further differences. Automated rep-PCR patterns were variable between serovars, but <it>S</it>. Enteritidis PT13 strains could not be differentiated.</p> <p>Conclusion</p> <p>None of the methods identified any significant variation between PT13 strains. Greater than 11,300 base pairs of sequence for each of seven <it>S</it>. Enteritidis PT13 strains were analyzed without detecting a single polymorphic site, although diversity between different phage types of <it>S</it>. Enteritidis was observed. These data suggest that Canadian <it>S</it>. Enteritidis PT13 strains are highly related genetically.</p

    Rhinovirus Outbreaks in Long-term Care Facilities, Ontario, Canada

    Get PDF
    Diagnostic difficulties may have led to underestimation of rhinovirus infections in long-term care facilities. Using surveillance data, we found that rhinovirus caused 59% (174/297) of respiratory outbreaks in these facilities during 6 months in 2009. Disease was sometimes severe. Molecular diagnostic testing can differentiate these outbreaks from other infections such as influenza

    Rational design of autotaxin inhibitors by structural evolution of endogenous modulators

    Get PDF
    Autotaxin produces the bioactive lipid lysophosphatidic acid (LPA), and is a drug target of considerable interest for numerous pathologies. We report the expedient, structure-guided evolution of weak physiological allosteric inhibitors (bile salts) into potent competitive Autotaxin inhibitors that do not interact with the catalytic site. Functional data confirms that our lead compound attenuates LPA mediated signalling in cells, and reduces LPA synthesis in vivo, providing a promising natural product derived scaffold for drug discovery

    CSF1R+ Macrophages Sustain Pancreatic Tumor Growth through T Cell Suppression and Maintenance of Key Gene Programs that Define the Squamous Subtype.

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is resistant to most therapies including single-agent immunotherapy and has a dense desmoplastic stroma, and most patients present with advanced metastatic disease. We reveal that macrophages are the dominant leukocyte population both in human PDAC stroma and autochthonous models, with an important functional contribution to the squamous subtype of human PDAC. We targeted macrophages in a genetic PDAC model using AZD7507, a potent selective inhibitor of CSF1R. AZD7507 caused shrinkage of established tumors and increased mouse survival in this difficult-to-treat model. Malignant cell proliferation diminished, with increased cell death and an enhanced T cell immune response. Loss of macrophages rewired other features of the TME, with global changes in gene expression akin to switching PDAC subtypes. These changes were markedly different to those elicited when neutrophils were targeted via CXCR2. These results suggest targeting the myeloid cell axis may be particularly efficacious in PDAC, especially with CSF1R inhibitors

    Structure-activity relationships of small molecule autotaxin inhibitors with a discrete binding mode

    Get PDF
    Autotaxin (ATX) is a secreted enzyme responsible for the hydrolysis of lysophosphatidylcholine (LPC) to the bioactive lysophosphatidic acid (LPA) and choline. The ATX-LPA signalling pathway is implicated in cell survival, migration, and proliferation; thus, the inhibition of ATX is a recognized therapeutic target for a number of diseases including fibrotic diseases, cancer, and inflammation, amongst others. Many of the developed synthetic inhibitors for ATX have resembled the lipid chemotype of the native ligand; however, a small number of inhibitors have been described that deviate from this common scaffold. Herein, we report the structure-activity relationships (SAR) of a previously reported small molecule ATX inhibitor. We show through enzyme kinetics studies that analogues of this chemotype are noncompetitive inhibitors, and using a crystal structure with ATX we confirm the discrete binding mode
    corecore