52 research outputs found

    Synthesis, antimicrobial activity and molecular docking of di‐ and triorganotin (IV) complexes with thiosemicarbazide derivatives

    Full text link
    "This is the peer reviewed version of the following article: Applied Organometallic Chemistry 33.2 (2019): e4700, which has been published in final form at https://doi.org/10.1002/aoc.4700. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions"Six organotin (IV) complexes with two ligands derived from 2,3‐butanedione and thiosemicarbazide have been synthesized and fully characterized by several spectroscopic techniques, including 119Sn NMR and single crystal X‐ray diffraction. Reactions of the ligand diacetyl‐2‐(thiosemicarbazone)‐3‐(3‐ hydroxy‐2‐naphthohydrazone), L1 H2, with SnR2Cl2 (R = Me, Bu, Ph) lead to the obtaining of complexes 1–3 with general formula [SnR2L1 ] (R = Me 1, R = Bu 2, R = Ph 3), in which the ligand is doubly deprotonated and behaves as a N2SO donor, whereas from the reactions of diacetyl‐2‐thiosemicarbazone, HATs, with the same organotin precursors any complex could be isolated. By contrast, reaction of HATs with SnR3Cl induces the ligand cyclization to form a 1,2,4‐triazine‐3‐thione that binds to the metal as a monoanionic donor in a mono or bidentate manner to form compounds 4–6 with formula [SnR3L2 ] (R = Me 4, R = Bu 5, R = Ph 6). The antimicrobial activity of the ligands and the six complexes was tested towards bacteria and fungi, including clinical isolated strains. The results show that the ligands are devoid of activity, except HATs that displays activity against Bacillus subtilis. Conversely, the complexes exhibit good antimicrobial properties against Gram positive and negative bacteria, yeasts and moulds. The best results are obtained for complexes [SnBu3L2 ] 5 and [SnPh3L2 ] 6, indicating that their more lipophilic nature could play an important role in the ease of microbial cell penetration. In some cases, these complexes display similar or higher activity than that of ampicillin and miconazole, used as antibacterial and antifungal positive controls, respectively. Docking study with DHPS protein (S. aureus) has shown that out of six drugs, the compound 6 has the best binding affinity (−8.5 Kcal/mol)Secretaría de Estado de Investigación, Desarrollo e Innovación, Grant/Award Number: CTQ2017‐90802‐RED

    Palladium(II) complexes of quinolinylaminophosphonates: synthesis, structural characterization, antitumor and antimicrobial activity

    Get PDF
    Three types of palladium(II) halide complexes of quinolinylaminophosphonates have been synthesized and studied. Diethyl and dibutyl [alpha-anilino-(quinolin-2-ylmethyl)]phosphonates (L1, 12) act as N,N-chelate ligands through the quinoline and aniline nitrogens giving complexes cis-[Pd(L1/12)X-2] (X Cl, Br) (1-4). Their 3-substituted analogues [alpha-anilino-(quinolin-3-ylmethyl)]phosphonates (L3, L4) form dihalidopalladium complexes trans-[Pd(L3/L4)(2)X-2] (5-8), with trans N-bonded ligand molecules only through the quinoline nitrogen. Dialkyl [alpha-(quinolin-3-ylamino)-N-benzyl]phosphonates (L5, L6) give tetrahalidodipalladium complexes [Pd-2(L5/L6)(3)X-4] (9-12), containing one bridging and two terminal ligand molecules. The bridging molecule is bonded to the both palladium atoms, one through the quinoline and the other through the aminoquinoline nitrogen, whereas terminal ligand molecules are coordinated each only to one palladium via the quinoline nitrogen. Each palladium ion is also bonded to two halide ions in a trans square-planar fashion. The new complexes were identified and characterized by elemental analyses and by IR, UV-visible, H-1, C-13 and P-31 nuclear magnetic resonance and ESI-mass spectroscopic studies. The crystal structures of complexes 1-4 and 6 were determined by X-ray structure analysis. The antitumor activity of complexes in vitro was investigated on several human tumor cell lines and the highest activity with cell growth inhibitory effects in the low micromolar range was observed for dipalladium complexes 11 and 12 derived from dibutyl ester L6. The antimicrobial properties in vitro of ligands and their complexes were studied using a wide spectrum of bacterial and fungal strains. No specific activity was noted. Only ligands L3 and L4 and tetrahalidodipalladium complexes 9 and 11 show poor activities against some Gram positive bacteria

    Geoeconomic variations in epidemiology, ventilation management, and outcomes in invasively ventilated intensive care unit patients without acute respiratory distress syndrome: a pooled analysis of four observational studies

    Get PDF
    Background: Geoeconomic variations in epidemiology, the practice of ventilation, and outcome in invasively ventilated intensive care unit (ICU) patients without acute respiratory distress syndrome (ARDS) remain unexplored. In this analysis we aim to address these gaps using individual patient data of four large observational studies. Methods: In this pooled analysis we harmonised individual patient data from the ERICC, LUNG SAFE, PRoVENT, and PRoVENT-iMiC prospective observational studies, which were conducted from June, 2011, to December, 2018, in 534 ICUs in 54 countries. We used the 2016 World Bank classification to define two geoeconomic regions: middle-income countries (MICs) and high-income countries (HICs). ARDS was defined according to the Berlin criteria. Descriptive statistics were used to compare patients in MICs versus HICs. The primary outcome was the use of low tidal volume ventilation (LTVV) for the first 3 days of mechanical ventilation. Secondary outcomes were key ventilation parameters (tidal volume size, positive end-expiratory pressure, fraction of inspired oxygen, peak pressure, plateau pressure, driving pressure, and respiratory rate), patient characteristics, the risk for and actual development of acute respiratory distress syndrome after the first day of ventilation, duration of ventilation, ICU length of stay, and ICU mortality. Findings: Of the 7608 patients included in the original studies, this analysis included 3852 patients without ARDS, of whom 2345 were from MICs and 1507 were from HICs. Patients in MICs were younger, shorter and with a slightly lower body-mass index, more often had diabetes and active cancer, but less often chronic obstructive pulmonary disease and heart failure than patients from HICs. Sequential organ failure assessment scores were similar in MICs and HICs. Use of LTVV in MICs and HICs was comparable (42\ub74% vs 44\ub72%; absolute difference \u20131\ub769 [\u20139\ub758 to 6\ub711] p=0\ub767; data available in 3174 [82%] of 3852 patients). The median applied positive end expiratory pressure was lower in MICs than in HICs (5 [IQR 5\u20138] vs 6 [5\u20138] cm H2O; p=0\ub70011). ICU mortality was higher in MICs than in HICs (30\ub75% vs 19\ub79%; p=0\ub70004; adjusted effect 16\ub741% [95% CI 9\ub752\u201323\ub752]; p<0\ub70001) and was inversely associated with gross domestic product (adjusted odds ratio for a US$10 000 increase per capita 0\ub780 [95% CI 0\ub775\u20130\ub786]; p<0\ub70001). Interpretation: Despite similar disease severity and ventilation management, ICU mortality in patients without ARDS is higher in MICs than in HICs, with a strong association with country-level economic status. Funding: No funding
    • 

    corecore