4,460 research outputs found

    Towards an Efficient Evaluation of General Queries

    Get PDF
    Database applications often require to evaluate queries containing quantifiers or disjunctions, e.g., for handling general integrity constraints. Existing efficient methods for processing quantifiers depart from the relational model as they rely on non-algebraic procedures. Looking at quantified query evaluation from a new angle, we propose an approach to process quantifiers that makes use of relational algebra operators only. Our approach performs in two phases. The first phase normalizes the queries producing a canonical form. This form permits to improve the translation into relational algebra performed during the second phase. The improved translation relies on a new operator - the complement-join - that generalizes the set difference, on algebraic expressions of universal quantifiers that avoid the expensive division operator in many cases, and on a special processing of disjunctions by means of constrained outer-joins. Our method achieves an efficiency at least comparable with that of previous proposals, better in most cases. Furthermore, it is considerably simpler to implement as it completely relies on relational data structures and operators

    Modeling phase transition and metastable phases

    Get PDF
    We propose a model that describes phase transition including metastable phases present in the van der Waals Equation of State (EoS). We introduce a dynamical system that is able to depict the mass transfer between two phases, for which equilibrium states are both metastable and stable states, including mixtures. The dynamical system is then used as a relaxation source term in a isothermal two-phase model. We use a Finite volume scheme (FV) that treats the convective part and the source term in a fractional step way. Numerical results illustrate the ability of the model to capture phase transition and metastable states

    Sonar and radar SAR processing for parking lot detection

    Get PDF
    In this paper, SAR processing algorithms for automotive applications are presented and illustrated on data from non-trivial test scenes. The chosen application is parking lot detection. Laboratory results obtained with a teaching sonar experiment emphasize the resolution improvement introduced with range-Doppler SAR processing. A similar improvement is then confirmed through full scale measurements performed with an automotive radar prototype operating at 77GHz in very close range conditions, typical of parking lot detection. The collected data allows a performance comparison between different SAR processing algorithms for realistic targets

    Global solvability of a networked integrate-and-fire model of McKean-Vlasov type

    Get PDF
    We here investigate the well-posedness of a networked integrate-and-fire model describing an infinite population of neurons which interact with one another through their common statistical distribution. The interaction is of the self-excitatory type as, at any time, the potential of a neuron increases when some of the others fire: precisely, the kick it receives is proportional to the instantaneous proportion of firing neurons at the same time. From a mathematical point of view, the coefficient of proportionality, denoted by α\alpha, is of great importance as the resulting system is known to blow-up for large values of α\alpha. In the current paper, we focus on the complementary regime and prove that existence and uniqueness hold for all time when α\alpha is small enough.Comment: Published at http://dx.doi.org/10.1214/14-AAP1044 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Web and Semantic Web Query Languages

    Get PDF
    A number of techniques have been developed to facilitate powerful data retrieval on the Web and Semantic Web. Three categories of Web query languages can be distinguished, according to the format of the data they can retrieve: XML, RDF and Topic Maps. This article introduces the spectrum of languages falling into these categories and summarises their salient aspects. The languages are introduced using common sample data and query types. Key aspects of the query languages considered are stressed in a conclusion

    Reactivity on the Web

    Get PDF
    Reactivity, the ability to detect simple and composite events and respond in a timely manner, is an essential requirement in many present-day information systems. With the emergence of new, dynamic Web applications, reactivity on the Web is receiving increasing attention. Reactive Web-based systems need to detect and react not only to simple events but also to complex, real-life situations. This paper introduces XChange, a language for programming reactive behaviour on the Web, emphasising the querying of event data and detection of composite events

    Doeblin Trees

    Full text link
    This paper is centered on the random graph generated by a Doeblin-type coupling of discrete time processes on a countable state space whereby when two paths meet, they merge. This random graph is studied through a novel subgraph, called a bridge graph, generated by paths started in a fixed state at any time. The bridge graph is made into a unimodular network by marking it and selecting a root in a specified fashion. The unimodularity of this network is leveraged to discern global properties of the larger Doeblin graph. Bi-recurrence, i.e., recurrence both forwards and backwards in time, is introduced and shown to be a key property in uniquely distinguishing paths in the Doeblin graph, and also a decisive property for Markov chains indexed by Z\mathbb{Z}. Properties related to simulating the bridge graph are also studied.Comment: 44 pages, 4 figure
    corecore