
Reactivity on the Web: Event Queries in

XChange

James Bailey a Francois Bry b Michael Eckert b

Paula-Lavinia Pătrânjan b

aDepartment of Computer Science, University of Melbourne
bInstitute for Informatics, University of Munich

Abstract

Reactivity, the ability to detect simple and composite events and respond in a timely
manner, is an essential requirement in many present-day information systems. With
the emergence of new, dynamic Web applications, reactivity on the Web is receiving
increasing attention. Reactive Web-based systems need to detect and react not only
to simple events but also to complex, real-life situations. This paper introduces
XChange, a language for programming reactive behaviour on the Web, emphasising
the querying of event data and detection of composite events.

Key words: World Wide Web, Reactivity, Reactive languages,
Event-Condition-Action rules, Composite events

1 Introduction

Reactivity on the Web —the ability of sites on the Web to detect happenings
or events of interest and to react to them automatically through reactive
programs— is gaining importance as part of the solution of many business
applications.

A key issue in supporting reactivity is the ability to detect and respond to
events in a timely fashion. Events are now beginning to play an increasingly

Email addresses: jbailey@cs.mu.oz.au (James Bailey),
francois.bry@ifi.lmu.de (Francois Bry), michael.eckert@stud.ifi.lmu.de
(Michael Eckert), paula.patranjan@ifi.lmu.de (Paula-Lavinia Pătrânjan).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Access LMU

https://core.ac.uk/display/12175087?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

important role within business strategy on the Web and event driven appli-
cations are being more widely deployed [17]. Terms such as zero latency en-
terprise, the real-time enterprise and on-demand computing are being used to
describe a vision in which events recognized anywhere within a business, can
immediately activate appropriate actions across the entire enterprise and be-
yond. Businesses that are able to react to events quickly and take appropriate
decisions are likely to have a competitive advantage

For example, consider a tourism Web service responsible for providing timely
information about flights to its subscribers, who can receive information in
real-time by their PDAs. Events of interest might include delays or cancel-
lations of flights, or the appearance of new discounts for flights offered by a
particular airline. Reactions to such events include notifying subscribers and
their colleagues about delays or automatically searching for and booking al-
ternative flights. Recognising and acting on such events rapidly is crucial for
the business to maintain its customer base.

Businesses on the Web are now also demanding the ability to recognise com-
posite, as well simple events. Complex events go beyond simple (atomic) hap-
penings and allow the specification of situations which aggregate together
several simple events. For example, the tourism Web service may wish to de-
tect flights for which at least twenty different customers have cancelled their
bookings in the last week. This could imply that a competitor is offering a
better rate and so offering a cheaper rate may be appropriate.

Most current reactive languages for the Web are oriented towards reacting
only to simple events and do not provide constructs for detecting and query-
ing composite events. The issue of reacting to composite events, i.e. (possibly
time-related) combinations of events, has received considerable attention in
the field of active databases (e.g. [13,18]). Useful concepts can be “borrowed”
from active databases when investigating reactivity on the Web. However, dif-
ferences between (generally centralised) active databases and the Web, where
a global synchronised time and central management are missing, necessitate
new approaches. One such approach is proposed by the language XChange
[2,4,5] and is presented in this article.

The remainder of this paper is structured as follows: We first give a high-level
overview of the declarative reactive language XChange and its introduce its
its design philosophy (Section 2). Next, we introduce event queries, the part of
XChange used to specify (composite) events that require a reaction (Section 3).
A declarative semantics and an algorithm for evaluation of composite event
queries follow in (Section 4). Finally, we give a discussion of related work and
a summary in (Section 5 and 6).

2

2 XChange: Rule-based Reactivity

We begin by introducing some high level design aspects of XChange.

2.1 Local Programs, Global Behaviour

An XChange program runs locally at some Web site — called an XChange-
aware Web site. It can access and modify local and remote data (Web re-
sources) in reaction to events. Typical events include updates of data, timer
events, but can also be high-level application-dependent events, such as the
cancellation of a flight. The notion of locally running programs is coherent
with the Web’s decentralised architecture. Programs exhibit global behaviour
by reacting to changes at (remote) Web sites. In turn, these reactions can
trigger further reactions at other Web sites.

2.2 Event-Based Communication

XChange programs running at different Web sites can communicate with each
other by sending event messages, i.e. messages containing information about
events that have occurred. They are represented in XML format, giving great
flexibility for coping with different kinds of applications and levels of event
abstraction, ranging from the low-level, e.g. insertion of a data item, to high-
level, e.g. cancellation of a certain flight.

For communicating or propagating events on the Web, two approaches are
conceivable: the push-manner, where a Web site informs possibly interested
Web sites about events, and the pull -manner, where interested Web sites pe-
riodically query (poll) persistent data found at other Web sites, in order to
determine changes. For propagating events (i.e. communicating data about
events), the push-approach has several important advantages: it allows faster
reaction, causes usually less network traffic, and saves local resources. Hence
XChange uses push-communication for events.

Communication of XChange-aware Web sites follows a peer-to-peer model. All
parties have the same capabilities and every party can initiate communication.
Event messages are directly communicated between Web sites; no broadcasting
of events is allowed and XChange assumes no central instance responsible for
controlling (e.g. synchronising) communication over the Web.

3

2.3 Separation of Volatile and Persistent Data

In a reactive Web, one can distinguish volatile data —data about events, com-
municated in a push-manner— and persistent data —data data Web resources,
retrievable in a pull-manner. There is a key difference between the two. Per-
sistent data is modifiable; metaphorically it is like (computer-)written text. It
can be revised by directly executing updates. Volatile data is not modifiable;
it is like a stream of speech. To correct, complete, or invalidate former volatile
data, new event messages have to be communicated.

Due to this essential difference in nature, access to volatile and persistent data
should not be mixed. Indeed, XChange clearly separates the querying (volatile)
event data from the querying of (persistent) Web data: event queries specify
situations requiring a reaction, Web queries are only evaluated as a reaction.

Event queries also need to be defined in such a way that no data on any event
needs to be kept forever in memory, i.e. the event lifespan must be bounded.
By design, XChange event queries are such that volatile data remains volatile.
If, for some applications, it is necessary to make some of the volatile data
persistent, then the applications should turn events into persistent Web data
by explicitly saving the relevant events.

2.4 Event-Condition-Action Rules

Event-Condition-Action (ECA) rules are a natural candidate to implement
reactive functionality. An XChange program consists of one or more ECA rules
of the form Event Query – Web Query – Action. They specify that an Action
should be automatically executed as an automatic response to the occurrence
of a situation specified by an Event Query, provided the Web Query can be
evaluated successfully.

Actions comprise raising events (composing and sending event messages), as
well as updates to Web resources (persistent data). XChange supports trans-
actions for executing actions in an all-or-nothing manner. There are two kinds
of ECA rules in XChange: event-raising rules (specifying events to be raised)
and transaction rules (specifying transactions to be executed).

Figure 1 shows an example of an XChange rule. It represents the rule of
a (reactive) personalised organiser, that detects cancellations of flights his
owner has booked (code following the keyword ON). As a reaction, it searches
for (code following the keyword FROM) and books another suitable flight (code
following the keyword TRANSACTION).

4

TRANSACTION

in { resource { "http://airline.com/reservations/" },

reservations {{

insert reservation { var F, name { "Christina Smith" } }

}}

}

ON

xchange:event {{

xchange:sender { "http://airline.com" },

cancellation {{

flight-number { "AI2021" },

date { var D }

}}

}}

FROM

in { resource { "http://airline.com" },

flights {{

var F -> flight {{

from { "Paris" }, to { "Munich" }, date { var D }

}}

}}

}

END

Fig. 1. An XChange ECA-rule

flights {

flight {

number { "AI2011" },

from { "Paris" },

to { "Munich" },

date { "2005-08-21" },

},

flight {

number { "AI2021" },

from { "Paris" },

to { "Munich" },

date { "2005-08-21" },

},

...

}

(a) Data term representation

<flights>

<flight>

<number> AI2011 </number>

<from> Paris </from>

<to> Munich </to>

<date> 2005-08-21 </date>

</flight>

<flight>

<number> AI2021 </number>

<from> Paris </from>

<to> Munich </to>

<date> 2005-08-21 </date>

</flight>

...

</flights>

(b) XML representation

Fig. 2. A flight database in data term and XML representation

2.5 Pattern-based Approach

Event queries, Web queries, event raising specifications, and updates describe
patterns for events that require a reaction. Patterns are templates that closely
resemble the structure of the data to be queried, constructed, or modified.
XChange embeds the Web query language Xcerpt [16,15], for querying XML
and other Web data formats. Data, queries, and updates can be represented
either in a term-like syntax, or in XML. Figure 2 contrasts the (data) term and
XML representations of a flight database. The term syntax is more compact
and easier to read and hence we will use it throughout this paper.

An ordered term specification (denoted by square brackets []) expresses that
the order of subterms is relevant, an unordered term specification (denoted by

5

curly braces {}) expresses that the order of subterms is irrelevant and must
not be kept. Ordered subterms are needed e.g. for describing the sequence
of chapters in a book. Unordered subterms are convenient for database or
set-like data items. Both total and partial (event and Web) query patterns
can be specified. A query term q using a partial specification (denoted by
double brackets [[]] or braces {{}}) for its subterms, matches with all such
terms that (1) contain matching subterms for all subterms of q and that (2)
might contain further subterms without corresponding subterms in q. In con-
trast, a query term t using a total specification (denoted by single brackets
[] or braces {}) does not match with terms that contain additional subterms
without corresponding subterms in q.

The patterns can contain variables for extracting pieces of information from
data terms (representing event data or Web resources’ data). Variables (pre-
ceded by the keyword var) are place holders for data, in the way that logic
programming variables also are. Variable restrictions can also be specified, by
writing var X − > p (read as), which restrict the bindings of the variables
to those terms that are matched by the restriction pattern p.

Example. An Xcerpt query term
that queries the data given in Fig-
ure 2 for flights departing from
Paris on 2005-08-21.

flights {{
var F -> flight {{

from { "Paris" },
date { "2005-08-21" }

}}

Query terms are matched against event data or Web resource data, by means
of a novel unification method called Simulation Unification [16,15], which can
handle querying constructs such as partial specifications, optional subterms, or
negation of subterms. Informally, a query term q simulation unifies (or simply
matches) a data term d, if q’s structure can be found in d. The outcome
of simulation unifying q and d, is a set of substitutions for the variables in
q. XChange event queries (event part) and Web queries (condition part) are
based on query terms and find substitutions for the variables that are then
subsequently used in the action part (event raising or transaction specification)
of a rule.

Update patterns, which are used in the action part of XChange rules, extend
query patterns: an update specification is a (possibly incomplete) pattern for
the data to be updated, augmented with the desired update operations (insert,
replace, delete). An update pattern may contain different types of update op-
erations. An insertion operation specifies a construct term (i.e. a total pattern
specification that makes use of variables for constructing new data) that is to
be inserted. A deletion operation specifies a query term for deleting all data
terms matching it. A replace operation specifies a query term to determine
data terms to be modified and a construct term as their new value. A more
detailed discussion on XChange update capabilities can be found in [5].

6

<xchange:event xmlns:xchange="http://pms.ifi.lmu.de/xchange">

<xchange:sender> http://airline.com </xchange:sender>

<xchange:recipient> http://organiser.org/smith/ </xchange:recipient>

<xchange:raising-time> 2005-08-21T12:00:25 </xchange:raising-time>

<xchange:reception-time> 2005-08-21T12:00:55 </xchange:raising-time>

<xchange:id> 4711 </xchange:id>

<cancellation>

<flight-number> AI2021 </flight-number>

<date> 2005-08-21 </date>

</cancellation>

</xchange:event>

Fig. 3. XChange Event Message

3 Event Queries

XChange uses Event Queries to detect whether some situation requiring a re-
action has occurred. Event queries serve a double purpose: they specify classes
of events to indicate when a certain rule should fire, and they extract data
from the events (as variable substitutions), that will be used in the subse-
quent condition- and action-part when the rule fires. This dual purpose of
event queries sets XChange apart from related work on reactivity and in par-
ticular composite events.

An XChange event query may be atomic or composite. An atomic event query
specifies a pattern for a single incoming event that is of interest. A composite
event query specifies a situation of interest that is given not by a single atomic
event query, but a temporal combination of several atomic events.

3.1 Events and their Representation

Events considered in XChange include updates to Web data, timer events,
transactional events, and application-specific events such as the flight cancel-
lation from above.

Event messages communicate events between (the same or different) Web sites.
An event message is an envelope for arbitrary XML content; it is an XML
document with root element event, arbitrary content, and in addition five
fixed elements: raising-time (i.e. the time of the event manager of the Web
site raising the event), reception-time (i.e. the time at which a site receives
the event), sender (i.e. the URI of the site where the event has been raised),
recipient (i.e. the URI of the site where the event has been received), and
id (i.e. an identifier given at the recipient Web site). Figure 3 gives an event
message for notifying a travel organiser of a flight cancellation. Specifications
of time points follow ISO 8601 format.

7

3.2 Atomic Event Queries

An atomic event query is a pattern for the representation of a single event
of interest (i.e. for an event message). Patterns can be accompanied by an
optional absolute temporal restriction, to restrict the event instances that are
considered relevant for the event query, to those that have occurred (or more
precisely, their representations have been received) in the specified time inter-
val. XChange absolute time restrictions can be specified by means of a fixed
starting and ending point (i.e. a finite time interval), following the keyword
in. The starting point of such a restricting interval may be implicit, e.g. the
time point of event query registration, in which case the ending time point
follows the keyword before.

Example. An XChange atomic
event query that detects insertion
of discounts for flights from Munich
to Paris that are received as noti-
fications before 7th of July 2005 is
given next.

xchange:event {{
flight {{

from {"Munich"}, to {"Paris"},
new-discount { var D }

}}
}} before 2005-07-07T10:00:00

3.3 Composite Event Queries

The capability to detect and react to composite events, i.e. sequences of event
instances that have occurred possibly at different Web sites within a specified
time interval, is needed for many Web-based reactive applications. However,
to the best of our knowledge, existing languages for reactivity on the Web do
not consider the issues of detecting and reacting to such composite events. 1

One of the novelties introduced by XChange is the detection of composite
events. Composite events are defined exclusively as answers to composite event
queries.

Composite event queries are specified by means of atomic event queries com-
bined using XChange composite event query constructs. XChange offers a
considerable number of such constructs along two dimensions: temporal re-
strictions and event compositions. This section introduces the constructs for
temporal restrictions and the core constructs for event compositions.

Note that a composite event does not have a single occurrence time, as an
atomic events does. Instead, a composite event inherits from its components a

1 [3] considers “composite events”. However, this notion refers in [3] to updates
of several elements of a single XML document. The XChange notion of composite
events goes beyond such updates of an XML document.

8

beginning time (the reception time of the first received constituent event that
is part of the composite event) and an ending time (the reception time of the
last received constituent event that is part of the composite event). That is,
in XChange composite events have a duration (a length of time).

3.3.1 Temporal Restriction

As for atomic event queries, temporal restrictions can be specified also for com-
posite event queries, placing temporal restrictions on the answers’ constituent
events. Besides absolute temporal restrictions, relative temporal restrictions,
given by a duration, can also be specified for composite event queries. Relative
temporal restrictions can be given as positive numbers of years, days, hours,
minutes, or seconds and their specification follows the keyword within.

In XChange, every (legal) event query must have a temporal restriction. This
makes it possible to release each (atomic or semi-composed composite) event
after a finite time. Thus, language design ensures that volatile data remains
volatile and storage requirements for events are kept (in practice) constant.

3.3.2 Event Composition

Composition operators can be used to express a temporal pattern over atomic
event occurrences that signifies a situation of interest.

Conjunctions specify that instances of each of the specified event queries
need to be detected in order to detect the conjunction event query; the or-
der in which event query instances occur is not of importance (denoted by
curly braces). The keyword and introduces such a composite event query in
XChange.

Example. Mrs. Smith wants to visit
an exhibition of G. Barthouil on a
rainy day. The following XChange
event query is used to detect the
conjunction of the exhibition no-
tification and the desired weather
forecast notification that are sent
by appropriate Web services.

and {
xchange:event {{

xchange:sender {"http://artactif.com"},
exhibition {{ painter {"G. Barthouil"},

location {"Marseilles"},
date { var D } }}

}},
xchange:event {{

xchange:sender {"http://weather.com"},
forecast {

date { var D }, city {"Marseilles"},
info {"It’s going to rain."} }

}}
} before "2005-11-11T20:15"

Temporally ordered conjunctions specify that the occurrences of com-
ponent event queries’ instances need to be successive in terms of time. The
keyword andthen introduces such an event query whose component event
queries are enclosed in square brackets. A total specification (i.e. single square
brackets) expresses that the answer to such a composite event query contains

9

only the instances of the component event queries. In contrast, a partial spec-
ification (i.e. double square brackets) expresses that the answer contains also
all events that have occurred in-between.

Example. The following XChange
event query is used to detect the
notification of a flight cancellation
and afterwards, within two hours
from its reception, the detection of
a notification informing that the
accommodation is not granted by
the airline.

andthen [
xchange:event {{

xchange:sender {"http://airline.com"},
cancellation-notification {{
flight {{ number { var Number } }} }}

}},
xchange:event {{

xchange:sender {"http://airline.com"},
accommodation {"Not granted!"}

}}
] within 2 hour

Inclusive disjunctions specify that the occurrence of an instance of any of
the specified event queries suffices for detecting the disjunction event query.
The keyword or denotes a disjunction in XChange and the event queries are
enclosed in curly braces.

Example. After Orange, Mrs.
Smith wants to visit Arles and
Nı̂mes. The next city to visit is
chosen depending on the notifi-
cation of train tickets and hotel
reservation made by appropriate
services.

or {
xchange:event {{

xchange:sender {"http://nimes.fr"},
service-notification {{

train {{ date { var D },
from {"Orange"}, to {"Nimes"}

}} }}
}},

xchange:event {{
xchange:sender {"http://arles.fr"},
reservation-notification {{

train {{ date { var D },
from {"Orange"}, to {"Arles"}

}} }}
}}

} before 2005-05-02T21:30:00

Exclusions specify that no instance of the given event query should have
occurred in a time interval in order to detect the exclusion event query. Such
a time interval is given by a finite time interval or by a composite event
query (recall that their instances have a beginning and an ending time and
thus determine a time interval). The keyword without introduces exclusion
of event queries in XChange.

Example. An XChange event query
that detects if the notification of an
online reservation made on 10th of
July 2005 is not received within ten
days.

without {
xchange:event {{

reservation-notification {{ }}
}}

} during [2005-07-10..2005-07-20]

Occurrences constructs for event queries refer to the number of times an
event query instance should occur or should be repeated to be of interest,
or to the position that events of interest should have in the incoming event
stream. The occurrences constructs supported by XChange (and explained in
the following) are quantifications, repetitions, and ranks.

Quantifications in event queries are used to detect instances that occur

10

(at least, at most, or exactly) a number of times in a given time interval
or between occurrences of other event query instances. The keyword times

introduces such composite event queries in XChange.

Example. The travel organiser’s
event query given next is used
to detect if Mrs. Smith receives
at least three important messages
from her secretary during a given
time interval.

atleast 3 times {
xchange:event {{

secretary-message {{
important {{ }} }}

}}
} during [2005-08-21..2005-08-22]

Repetitions are used for detecting e.g. every second, forth, sixth, and so
on, instances of a specified event query in a given time interval or between
occurrences of other event query instances. The keyword every introduces
such event queries in XChange.

Example. Mrs. Smith wants to
slowly quit smoking so she an-
swers only to every second call from
her colleague suggesting a smoking
break (specified in XChange using
the next event query).

every 2 {
xchange:event {{

xchange:sender {http://lmu.de/werner/},
break-for-a-smoke {{

info {"Join me for a cigarette!"}
}}

}}
} within workday

Note that time intervals can be given as union of finite time intervals, thus
periodical temporal specifications are also allowed in XChange. Here, workday
denotes a temporal type defined using e.g. the Calendar and Time Type Sys-
tem CaTTS [6].

Ranks are used to detect instances of a specified event query having a given
rank (or position) in the incoming stream of events. They are useful in speci-
fying interest in the first or the last instance of an event query. The keywords
withrank and last introduce such event queries in XChange.

Other composite event constructs are also supported by XChange. For ex-
ample, the multiple inclusions and exclusions construct is used to detect oc-
currences of a given number of event query instances and the non-occurrence
of instances of the other specified event queries. It expresses a generalised
exclusive disjunction of event queries. Overlapping and meet constructs for
composite event queries detect instances of the specified event query if their
component (composite) events overlap or meet, respectively, on the time axis
of the incoming events.

XChange constructs for composite event queries can be nested arbitrarily;
thus, complex reactive applications can be easily and elegantly implemented
in XChange. Figure 4 gives a composite event query for detecting occurrences
of a flight cancellation, where the airline does not grant an accommodation.
For this purpose, a temporal ordered conjunction construct, the exclusion

11

andthen [
xchange:event {{

xchange:sender { "http://airline.com" },
cancellation-notification {{

flight {{ number { "AI2021" }, date { "2005-08-21" } }}
}}

}},
without { xchange:event {{

xchange:sender { "http://airline.com" },
accomodation-granted {{ hotel {{ }} }} }}

} during [2005-08-21T17:00..2005-08-21T19:00]
] within 2 hour

Fig. 4. Nesting Composite Event Query Constructs

<xchange:event-seq>
<xchange:event>

<xchange:sender> http://lmu.de/secretary </xchange:sender>
<xchange:recipient> http://lmu.de/smith </xchange:recipient>
<xchange:raising-time> 2005-08-21T13:00 </xchange:reception-time>
<xchange:reception-time> 2005-08-21T13:01 </xchange:reception-time>
<xchange:reception-id> 42 </xchange:reception-id>
<secretary-message>

<important/>
<text> Urgent call from Werner </text>

</secretary-message>
</xchange:event>
<xchange:event>

<xchange:sender> http://lmu.de/secretary </xchange:sender>
...

</xchange:event>
<xchange:event>

<xchange:sender> http://lmu.de/secretary </xchange:sender>
...

</xchange:event>
</xchange:event-seq>

Fig. 5. XML Representation of a Composite Event

construct and temporal restrictions are combined.

3.3.3 Answers to Event Queries

For determining answers to atomic event queries, the event manager of an
XChange-aware Web site attempts to match each incoming event received,
with the currently posed atomic event queries (which themselves may be part
of composite event queries). The matching of an atomic event query with an
incoming event is based on the simulation unification [15], a novel unification
method developed for matching query terms (i.e. queries or patterns to XML
and other data) with data terms (i.e. XML and other data). The same method
is used in evaluating the Web queries in the condition part of rules, reducing
learning effort for users. Section 4.2 discusses in more detail the algorithm
used for the evaluation of composite event queries.

An answer to an atomic event query — an atomic event — is an event whose
representation (as event message) matched the event query (and occurred in
the given time interval, if a temporal restriction has been specified). Thus, the
representation of an answer to an atomic event query is an event message –
an XML document.

An answer to a composite event query — a composite event — should also be
representable as an XML document, just like atomic events; this allows further

12

processing of composite events at local and remote Web sites. We choose a
(flat) sequence (with an artificial root to make valid XML) of all atomic events
that were used for answering the composite event query. Figure 5 shows an
answer to the composite event query given as example for quantifications.

We have also investigated other approaches for representing answers, e.g.,
XML representations mirroring the nested structure of a composite event
query. However, we found a flat sequence better. It is simpler and more in-
tuitive for users, since no knowledge of the query structure is required. It
leads to an easier definition of declarative semantics (presented in the next
section), due to the similarity between sets and sequences. Finally, we believe
it is desirable for a query language to have similar input and output — and
the input of event queries is a collection of atomic events arriving sequentially.
In principle, this allows using the answer to a composite event query as the
input to another event query.

4 Semantics of Event Queries

Comparisons of (composite) event query languages such as [20], show that
interpretation of similar language constructs can vary considerably. To avoid
misinterpretations, clear semantics are indispensable. We next present a declar-
ative semantics for XChange.

4.1 Declarative Semantics

Declarative semantics are not only beneficial to avoid misinterpretations of
language constructs by both users and implementors; they also provide a basis
for formal proofs of language properties, help us understand the language
design and promote the construction of optimisations. We define a declarative
semantics for XChange’s event query language as a ternary relation between
event queries, answers (i.e. composite events), and the stream of incoming
event messages.

In the following, we draw particular attention to the following semantic fea-
tures, that distinguish XChange from other related work on events.

• Event query specifications may contain features such as free variables and
partial matches. The answers to composite event queries may contain com-
plex bindings for such variables.

• The answer to an event query is a sequence and may include (atomic) events
not referred to in the query. This is particularly useful since it allows pow-

13

erful composition of event queries (i.e. A second event query can be applied
to the sequence(s) returned by the first event query).

Answers An answer to an event query q is a tuple (s, Σ). It consists of a
(finite) sequence s of atomic events happening in a time interval [b..e] that
allowed a successful evaluation of q and a corresponding set of substitutions Σ
for the free variables of q. We write s = 〈a1, . . . an〉eb to indicate that s begins
at time point begin(s) := b, ends at end(s) := e, and contains the atomic
events ai = dri

i , which are data terms di received at time point ri. We have
b ≤ r1 < . . . < rn ≤ e; note that b < r1 and rn < e are possible.

Observe that the answer is an event sequence, and it is possible for instances of
events not specified in the query to be returned. For example, a partial match
andthen[[a,b]] returns not only event instances of a and b to be returned,
but also instances all atomic events happening between them. This cannot be
captured with substitutions alone.

Substitution Sets The substitution set Σ contains substitutions σ (partial
functions) assigning variables to data terms. Assuming a standardisation of
variable names, let V be the set of all free variables in a query having at least
one defining occurrence. A variable’s occurrence is defining, if it is part of a
non-negated sub-query, i.e. does not occur inside a without-construct, and
thus can be assigned a value in the query evaluation. Let Σ |V denote the
restriction of all substitutions σ in Σ to V . For triggering rules in XChange,
we are interested only in the maximal substitution sets.

Event Stream For a given event query q, all atomic events received after
its registration form a stream of incoming events (or, event stream) E . Events
prior to a query’s registration are not considered, as this might require an
unbounded event life-span. Thus, since it fits better with the incremental event
query evaluation (described in the next section), we prefer the term “stream”
to the term “history” sometimes used in related work. Formally, E is an event
sequence (as s above) beginning at the query’s registration time.

Answering-Relation Semantics of event queries are defined as a ternary
relation between event queries q, answers (s, Σ), and event stream E . We write
q /E (s, Σ) to indicate that q is answered by (s, Σ) under the event stream E .
Definition of /E is by induction on q, and we give only a few exemplary cases
here.

q is an atomic event query: q /E (s, Σ) if and only if (1) s = 〈dr〉rr, (2) dr

is an atomic event in the stream E , (3) the data term d simulation unifies
(“matches”) with the query q under all substitutions in Σ. For a formal account
of (3) see work on Xcerpt [15].

q = and[q1, . . . , qn]: q /E (s, Σ) iff there exist event sequences s1, . . . sn such

14

that (1) qi /E (si, Σ) for all 1 ≤ i ≤ n, (2) s comprises all event sequences
s1, . . . sn (denoted s =

⋃
1≤i≤n si).

q = andthen[[q1, q2]]: q /E (s, Σ) iff there exist event sequences s1, s′, and s2

such that (1) qi /E (si, Σ) for i = 1, 2, (2) s = s1 ∪ s′ ∪ s2, (3) end(s1) ≤
begin(s2), and (4) s′ is a continuous extract of E (denoted s′ @ E) with (5)
begin(s′) = end(s1) and end(s′) = begin(s2). The event sequence s′ serves
to collect all atomic events happening “between” the answers to q1 and q2

as required by the partial matching [[]]. The n-ary variant of this binary
andthen is defined by rewriting the n-ary case associatively to nested binary
operators.

q = without {q1} during {q2}: q /E (s, Σ) iff (1) q2 /E (s, Σ), (2) there is no
answer (s1, Σ1) to q1 (q1 /E (s1, Σ1)) such that Σ contains substitutions for the
variables V with defining occurrences that are also in Σ1 (Σ |V⊆ Σ1 |V).

q = q′ within w: q /E (s, Σ) iff (1) q′ /E (s, Σ) and (2) end(s)− begin(s) ≤ w.

Discussion Our answering relation approach to semantics allows the use of
advanced features in XChange’s event query language, such as free variables
in queries, event negation, and partial matches. Note that due to the lat-
ter two, approaches where answers are generated by a simple application of
substitutions to the query would be difficult, if not impossible to define.

Our declarative semantics provide a sound basis for formal proofs about lan-
guage properties. We have used it for proving that, in order to evaluate any
legal event query q at some time t correctly, only events of bounded life-span
are necessary; that is, it suffices to consider the restriction E |tt−β of the event
stream E to a time interval [(t− β) .. t]. The time bound β (a length of time)
is only determined from q and does not depend on the incoming events E . For-
mally, we have proved the requirement that for all legal event queries q there
exists a time bound β, such that for all time points t, all event streams E , and
all answers (s, Σ) with end(s) = t we have: q /E (s, Σ) ⇐⇒ q /E|t

t−β
(s, Σ).

4.2 Operational Semantics: Event Query Evaluation

Evaluation of event queries should be performed in an incremental manner:
work done in one evaluation step of an event query on some incoming atomic
event should not be redone in future evaluation steps on further incoming
events. To evaluate an XChange composite event query in an incremental
manner, we store all partial evaluations in the query’s operator tree. Leaf
nodes in the operator tree implement atomic event queries, inner nodes im-
plement composition operators and time restrictions. When an event message
is received, it is injected at the leaf nodes; data in the form of event query

15

SetOfCompositeEvents evaluate(AndNode n, AtomicEvent a) {
// receive events from child nodes
SetOfCompositeEvents newL := evaluate(n.leftChild, a);
SetOfCompositeEvents newR := evaluate(n.rightChild, a);

// compose composite events
SetOfCompositeEvents answers := ∅;
foreach ((sL, ΣL), (sR, ΣR)) ∈(newL × n.storageR) ∪

(n.storageL × newR) ∪
(newL × newR) {

SubstitutionSet Σ := ΣL 1 ΣR;
if (Σ 6= ∅) answers := answers ∪ new CompositeEvent(sL ∪ sR, Σ);

}

// update event storage
n.storageL := n.storageL ∪ newL;
n.storageR := n.storageR ∪ newR;

// forward composed events to parent node
return answers;

}

Fig. 6. Implementation of a (binary) and inner node in pseudo-code

answers (s, Σ) (cf. previous section) then flows bottom-up in the operator tree
during this evaluation step. Inner nodes can store intermediate results to avoid
recomputation when the next evaluation step is initiated by the next incoming
event message.

Leaf nodes process an injected event message by trying to match it with their
atomic event query (using Simulation Unification). If successful, this results in
a substitution set Σ 6= ∅, and the answer (s, Σ), where s contains only the one
event message, is forwarded to the parent node. Inner nodes process composite
events they receive from their child nodes following the basic pattern:

(1) attempt to compose composite events (s, Σ) (according to the opera-
tor the inner node implements) from the stored and the newly received
events,

(2) update the event storage by adding newly received events that might be
needed in later evaluations,

(3) forward the events composed in (1) to the parent node.

Figure 6 sketches an implementation for the evaluation of a (binary) and inner
node in java-like pseudo-code. Consider it in an example of evaluating the
event query q =and{ a{{var X}}, b{{var X}} } within 2h (atomic event
queries are abbreviated for notational convenience) in Figure 7. For simplicity,

16

within 2h

and

a{{var X}} b{{var X}}

a{1,2}

(s1, Σ1)

(a) Evaluation at t=1

within 2h

and

a{{var X}} b{{var X}}

(s1, Σ1)

b{2,3}

(s2, Σ2)

(s3, Σ3)

(b) Evaluation at t=2

within 2h

and

a{{var X}} b{{var X}}

(s1, Σ1) (s2, Σ2)

a{3}

(s4, Σ4)

(s5, Σ5)

(c) Evaluation at t=3

s1 = 〈a{1,2}1〉11, Σ1 = {{X 7→ 1}, {X 7→ 2}}; s2 = 〈b{2,3}2〉22, Σ2 = {{X 7→ 2}, {X 7→ 3}};
s3 = 〈a{1,2}1, b{2,3}2〉12, Σ3 = {{X 7→ 2}}; s4 = 〈a{3}3〉33, Σ4 = {{X 7→ 3}}; s5 = 〈b{2,3}2a{4}〉23, Σ5 = {{X 7→ 3}}.

(d) Definitions of si and Σi

Fig. 7. Incremental evaluation of an event query using bottom-up data flow in a
storage-augmented operator tree

we let event messages arrive at time points t = 1, 2, 3 that are one hour apart;
this is of course not the normal case in practice and not an assumption made
by the algorithm.

Figure 7(a) depicts receiving the event message a{1,2} at time t = 1. The
event message does not match with the atomic event query b{{var X}} (right
leaf in the tree). But it does match with the atomic event query a{{var X}}
(left leaf) with substitution set Σ1 and is propagated upwards in the tree as
answer (s1, Σ1) to the parent node and (Figure 7(d) defines si and Σi). The
and-node cannot form a composite event from its input, yet, but it stores
(s1, Σ1) for future evaluation steps.

At t = 2 we receive the event message b{2,3} (Figure 7(b)); it matches the
right leaf node and (s2, Σ2) is propagated to the and-node. The and-node
stores (s2, Σ2) and tries to form a composite event (s3, Σ3) from (s1, Σ1) and
(s2, Σ2). Σ3 is computed as a (variant of a) natural join (⊥ denotes undefined):
Σ3 = Σ1 1 Σ2 =
{σ1 ∪ σ2 | σ1 ∈ Σ1, σ2 ∈ Σ2,∀X. σ1(X) = σ2(X) ∨ σ1(X) = ⊥ ∨ σ2(X) = ⊥}.
Σ3 now contains all substitutions that can be used simultaneously in all atomic
event queries in and’s subtree. Σ = ∅ would signify that no such substitution
exists and thus no composite event can be formed. In our case however there
is exactly one substitution {X 7→ 2} and we propagate (s3, Σ3) to the within

2h-node. This node checks that end(s3) − begin(s3) = 1 ≤ 2 and pushes
(s3, Σ3) up (there is no need to store it). With this (s3, Σ3) reaches the top
and we have our first answer to the event query q.

Figure 7(c) shows reception of another event message a{3} at t = 3, which
results in another answer (s5, Σ5) to q.

17

After the query evaluation at t = 3, we can release (delete) the stored an-
swer (s1, Σ1) from the operator tree: any composite event formed with use
of (s1, Σ1) will not pass the within 2h-node. Event deletion is performed by
top-down traversal of the operator tree. Temporal restriction operator nodes
put restrictions on begin(s) and end(s) for all answers (s, Σ) stored in their
subtrees. In our example, all events (s, Σ) in the subtree of within 2h must
satisfy t− 2 ≤ begin(s), where t is the current time.

The idea to prove correctness of the incremental algorithm w.r.t. the declar-
ative semantics is by dividing the problem into two: We first forget that the
algorithm is incremental and stores events; to detect an event at a time point
t we pretend that all incoming events are processed in one single evaluation.
Then we prove that the operator tree will always have stored the right events,
that is, at time point t it stores all events that can be constituting part of a
composite event with occurrence time t or later. This requires checking that
in the bottom-up data flow we store all needed events and that in the event
deletion we do not delete needed ones.

5 Related Work

A number of active database prototypes have been built providing sophisti-
cated event algebras (e.g. SNOOP [8], REACH [21], CHIMERA [11], Rock&Roll
[9] and ODE [10]). The PFL system [14] uses the functional paradigm and in-
cludes active rules with event queries. Its philosophy of treating events as
queries (rather than simple algebraic expressions) that can return complex
bindings is shared by XChange. Work in [20] provides a meta-model for clas-
sifying a number of properties of composite event formalisms for active rules.
Recent work in [1], outlines a situation monitoring system and expands upon
much of the work in the active database literature. Unlike XChange, these
works are oriented towards a centralised system, as opposed to a distributed
one like the Web and do not focus on XML as the data format. One work that
does consider events in a distributed environment is [19], which considers in
detail the influence of (distributed) timestamps on event specification. This
direction is complementary to our approach and we intend to evaluate in fu-
ture work the ways in which this kind of detail may be specified in XChange
event queries.

One related work that considers events for XML is [12]. This presents monitor-
ing and subscription in Xyleme, an XML warehouse supporting subscription
to web documents. A set of alerters monitor simple changes to web documents.
A monitoring query processor then performs more composite event detection
and sends notifications of events to a trigger engine which performs the neces-
sary actions, including creating new versions of XML documents. The focus of

18

this reactive functionality is highly tuned to this specific application. A recent
work which considers composite events for XML is [3], which does so in the
context of updates to a single XML document. In contrast, XChange allows
combinations of events that are not necessarily updates and which do not need
to be associated with a particular document.

In summary, there are several features present in XChange that distinguish it
from other related work.

• Events are represented as XML documents and consequently may have a
nested structure, to which pattern matching can be applied within event
queries.

• XChange is not only concerned with detecting events. It places special em-
phasis on the extraction of data from events, in the form of variable assign-
ments. Event queries may include both partial matches and free variables.
Answers to event queries are sequences, allowing powerful query composi-
tion.

• The evaluation algorithm for composite events must take into account the
extraction of variable assignments. This makes it rather different from the
evaluation methods used by, e.g. SNOOP [8].

• There is a clear separation between events as volatile data versus the per-
sistent data which can be queried by the user. This in turn has implications
for the kinds of rules that can be defined.

6 Conclusion

This article has presented the high-level language XChange for realising re-
active Web applications. XChange is a language of Event-Condition-Action
rules: The Event part queries incoming event messages (XML documents) to
detect (composite) events an to extract data from them for use in the subse-
quent rule parts. The Condition part queries Web resources’ data. The Action
part specifies event messages to be raised and updates to be executed. This
article improves upon work in [5] by focusing on querying events; we have
presented language constructs for detecting composite events together with
their declarative and operational semantics.

XChange introduces a novel view over the Web data by stressing a clear sepa-
ration between persistent data (data of Web resources, such as XML or HTML
documents) and volatile data (event data communicated on the Web between
XChange programs). XChange’s language design enforces this clear separation
and entails new characteristics (such as deleting (atomic or semi-composed
composite events) after a bounded time) of event processing on the Web.

19

XChange is an ongoing research project. At present, the design of an ex-
tended core language for XChange is completed. For implementing the lan-
guage XChange and specifying its semantics, a modular approach that mirrors
the three components of rules is followed. A prototype for the event query eval-
uation has been developed and a declarative semantics for the event language
has been specified. A first version of Xcerpt, the language used in XChange
for expressing Web queries, is fully designed and a reference implementation
is available (cf. http://xcerpt.org). The declarative semantics of Xcerpt is for-
malised in [7,15]. The implementation and the semantics’ specification of the
action part is under development, and we have started working on use cases
demonstrating XChange’s practical usage.

References

[1] A. Adi and O. Etzion. Amit – The Situation Manager. Very Large Data Bases
Journal, 13(2):177–203, 2004.

[2] J. Bailey, F. Bry, and P.-L. Pătrânjan. Composite Event Queries for Reactivity
on the Web. In Poster Proceedings:Proc. of 14th Int. World Wide Web
Conference, page To appear, Chiba, Japan, May 2005. ACM.

[3] M. Bernauer, G. Kappel, and G. Kramler. Composite Events for XML. In Proc.
of 13th Int. World Wide Web Conference, pages 175–183, New York, USA, May
2004. ACM.

[4] F. Bry, T. Furche, P.-L. Pătrânjan, and S. Schaffert. Data Retrieval and
Evolution on the (Semantic) Web: A Deductive Approach. In Workshop on
Principles and Practice of Semantic Web Reasoning at 20th Int. Conference on
Logic Programming, pages 34–49, Saint Malo, France, 2004. Springer.

[5] F. Bry and P.-L. Pătrânjan. Reactivity on the Web: Paradigms and Applications
of the Language XChange. In Proc. of 20th Annual ACM Symposium on Applied
Computing, Santa Fe, New Mexico, March 2005. ACM Press.

[6] F. Bry, F.-A. Rieß, and S. Spranger. CaTTS: Calendar Types and Constraints
for Web Applications. In Proc. of 14th Int. World Wide Web Conference, Chiba,
Japan, page To appear. ACM, 2005.

[7] F. Bry, S. Schaffert, and A. Schröder. A contribution to the Semantics of
Xcerpt, a Web Query and Transformation Language. In Proc. of 18th Workshop
on (Constraint) Logic Programming, pages 258–268, Potsdam, Germany, 2004.
GLP, GI.

[8] S. Chakravarthy and D. Mishra. Snoop: An Expressive Event Specification
Language for Active Databases. Data Knowledge Engineering, 14(1):1–26, 1994.

[9] Andrew Dinn, Norman W. Paton, M. Howard Williams, and Alvaro A. A.
Fernandes. An active rule language for rock & roll. In BNCOD, pages 36–
55, 1996.

20

[10] N. Gehani, H.V. Jagadish, and O. Shmueli. Event Specification in an Active
Object-Oriented Database. In ACM SIGMOD Int. Conference on Management
of Data, San Diego, 1992.

[11] R. Meo, G. Psaila, and S. Ceri. Composite Events in Chimera. In P.M.G.
Apers, M. Bouzeghoub, and G. Gardarin, editors, Proc. of 5th Int. Conference
on Extending Database Technology, pages 56–76. Springer, 1996.

[12] B. Nguyen, S. Abiteboul, G. Cobena, and M. Preda. Monitoring XML Data on
the Web. In ACM SIGMOD Int. Conf. on Management of Data, pages 437–448.
ACM Press, 2001.

[13] N. W. Paton, editor. Active Rules in Database Systems. Springer, 1999.

[14] Swarup Reddi, Alexandra Poulovassilis, and Carol Small. Pfl: An active
functional dbpl. In Active Rules in Database Systems, pages 297–308. 1999.

[15] S. Schaffert. Xcerpt: A Rule-Based Query and Transformation Language for
the Web. PhD thesis, University of Munich, Germany, December 2004.

[16] S. Schaffert and F. Bry. Querying the Web Reconsidered: A Practical
Introduction to Xcerpt. In Proc. of Int. Conference Extreme Markup Languages,
Montreal, Quebec, Canada, August 2004.

[17] R. Schulte. The growing role of events in enterprise applications. Technical
report, Gartner Research Report AV-20-3900, 9 July 2003.

[18] J. Widom and S. Ceri. Active Database Systems: Triggers and Rules for
Advanced Database Processing. Morgan Kaufmann, 1996.

[19] S. Yang and S. Chakravarthy. Formal Semantics of Composite Events
for Distributed Environments. In Proc. of 15th Int. Conference on Data
Engineering, pages 400–407, Australia, 1999. IEEE Computer Society.

[20] D. Zimmer and R. Unland. On the Semantics of Complex Events in Active
Database Management Systems. In Proc. of 15th Int. Conference on Data
Engineering, pages 392–399, Australia, 1999. IEEE Computer Society.

[21] J. Zimmermann and A.P. Buchmann. REACH. In Active Rules in Database
Systems, pages 263–277. Springer, 1999.

21

