12,196 research outputs found

    The Schr\"odinger Equation in the Mean-Field and Semiclassical Regime

    Full text link
    In this paper, we establish (1) the classical limit of the Hartree equation leading to the Vlasov equation, (2) the classical limit of the NN-body linear Schr\"{o}dinger equation uniformly in N leading to the N-body Liouville equation of classical mechanics and (3) the simultaneous mean-field and classical limit of the N-body linear Schr\"{o}dinger equation leading to the Vlasov equation. In all these limits, we assume that the gradient of the interaction potential is Lipschitz continuous. All our results are formulated as estimates involving a quantum analogue of the Monge-Kantorovich distance of exponent 2 adapted to the classical limit, reminiscent of, but different from the one defined in [F. Golse, C. Mouhot, T. Paul, Commun. Math. Phys. 343 (2016), 165-205]. As a by-product, we also provide bounds on the quadratic Monge-Kantorovich distances between the classical densities and the Husimi functions of the quantum density matrices.Comment: 33 page

    The case for absolute ligand discrimination : modeling information processing and decision by immune T cells

    Get PDF
    Some cells have to take decision based on the quality of surroundings ligands, almost irrespective of their quantity, a problem we name "absolute discrimination". An example of absolute discrimination is recognition of not-self by immune T Cells. We show how the problem of absolute discrimination can be solved by a process called "adaptive sorting". We review several implementations of adaptive sorting, as well as its generic properties such as antagonism. We show how kinetic proofreading with negative feedback implements an approximate version of adaptive sorting in the immune context. Finally, we revisit the decision problem at the cell population level, showing how phenotypic variability and feedbacks between population and single cells are crucial for proper decision

    Quantitative games with interval objectives

    Get PDF
    Traditionally quantitative games such as mean-payoff games and discount sum games have two players -- one trying to maximize the payoff, the other trying to minimize it. The associated decision problem, "Can Eve (the maximizer) achieve, for example, a positive payoff?" can be thought of as one player trying to attain a payoff in the interval (0,∞)(0,\infty). In this paper we consider the more general problem of determining if a player can attain a payoff in a finite union of arbitrary intervals for various payoff functions (liminf, mean-payoff, discount sum, total sum). In particular this includes the interesting exact-value problem, "Can Eve achieve a payoff of exactly (e.g.) 0?"Comment: Full version of CONCUR submissio

    Laser-induced rotation of a levitated sample in vacuum

    Get PDF
    A method of systematically controlling the rotational state of a sample levitated in a high vacuum using the photon pressure is described. A zirconium sphere was levitated in the high-temperature electrostatic levitator and it was rotated by irradiating it with a narrow beam of a high-power laser on a spot off the center of mass. While the laser beam heated the sample, it also rotated the sample with a torque that was proportional both to the laser power and the length of the torque arm. A simple theoretical basis was given and its validity was demonstrated using a solid zirconium sphere at ~2000 K. This method will be useful to systematically control the rotational state of a levitated sample for the containerless materials processing at high temperature

    Dry microfoams: Formation and flow in a confined channel

    Full text link
    We present an experimental investigation of the agglomeration of microbubbles into a 2D microfoam and its flow in a rectangular microchannel. Using a flow-focusing method, we produce the foam in situ on a microfluidic chip for a large range of liquid fractions, down to a few percent in liquid. We can monitor the transition from separated bubbles to the desired microfoam, in which bubbles are closely packed and separated by thin films. We find that bubble formation frequency is limited by the liquid flow rate, whatever the gas pressure. The formation frequency creates a modulation of the foam flow, rapidly damped along the channel. The average foam flow rate depends non-linearly on the applied gas pressure, displaying a threshold pressure due to capillarity. Strong discontinuities in the flow rate appear when the number of bubbles in the channel width changes, reflecting the discrete nature of the foam topology. We also produce an ultra flat foam, reducing the channel height from 250 μ\mum to 8 μ\mum, resulting in a height to diameter ration of 0.02; we notice a marked change in bubble shape during the flow.Comment: 7 pages; 7 figures; 1 tex file+ 22 eps-file

    Reverse Mathematics and Algebraic Field Extensions

    Full text link
    This paper analyzes theorems about algebraic field extensions using the techniques of reverse mathematics. In section 2, we show that WKL0\mathsf{WKL}_0 is equivalent to the ability to extend FF-automorphisms of field extensions to automorphisms of Fˉ\bar{F}, the algebraic closure of FF. Section 3 explores finitary conditions for embeddability. Normal and Galois extensions are discussed in section 4, and the Galois correspondence theorems for infinite field extensions are treated in section 5.Comment: 25 page
    • …
    corecore