Some cells have to take decision based on the quality of surroundings
ligands, almost irrespective of their quantity, a problem we name "absolute
discrimination". An example of absolute discrimination is recognition of
not-self by immune T Cells. We show how the problem of absolute discrimination
can be solved by a process called "adaptive sorting". We review several
implementations of adaptive sorting, as well as its generic properties such as
antagonism. We show how kinetic proofreading with negative feedback implements
an approximate version of adaptive sorting in the immune context. Finally, we
revisit the decision problem at the cell population level, showing how
phenotypic variability and feedbacks between population and single cells are
crucial for proper decision