137 research outputs found

    Three dimensional electron microscopy reveals changing axonal and myelin morphology along normal and partially injured optic nerves

    Get PDF
    Following injury to the central nervous system, axons and myelin distinct from the initial injury site undergo changes associated with compromised function. Quantifying such changes is important to understanding the pathophysiology of neurotrauma; however, most studies to date used 2 dimensional (D) electron microscopy to analyse single sections, thereby failing to capture changes along individual axons. We used serial block face scanning electron microscopy (SBF SEM) to undertake 3D reconstruction of axons and myelin, analysing optic nerves from normal uninjured female rats and following partial optic nerve transection. Measures of axon and myelin dimensions were generated by examining 2D images at 5 µm intervals along the 100 µm segments. In both normal and injured animals, changes in axonal diameter, myelin thickness, fiber diameter, G-ratio and percentage myelin decompaction were apparent along the lengths of axons to varying degrees. The range of values for axon diameter along individual reconstructed axons in 3D was similar to the range from 2D datasets, encompassing reported variation in axonal diameter attributed to retinal ganglion cell diversity. 3D electron microscopy analyses have provided the means to demonstrate substantial variability in ultrastructure along the length of individual axons and to improve understanding of the pathophysiology of neurotrauma

    Mindfulness in Action: Discovering How U.S. Navy Seals Build Capacity for Mindfulness in High-Reliability Organizations (HROs)

    Get PDF
    This study of US Navy Sea Air and Land (SEAL) commandos contributes to research investigating mindfulness in High-Reliability Organizations (HROs) by identifying the individual and collective influences that allow SEALs to build capacity for mindful behaviors despite the complexity of their missions, the unpredictability of their operating environments, and the danger inherent in their work. Although the HRO literature identifies a number of hallmarks of reliability, less attention is paid to how mindfulness is operationally achieved in situ by individuals on the frontline working in HROs. This study addresses this gap using a multi-phase, multi-method investigation of US Navy SEALs, identifying new links between individual mindfulness attributes (comfort with uncertainty and chaos) and collective mindfulness influences (a positive orientation towards failure) that combine to co-create a phenomenon we call 'mindfulness in action'. Mindfulness in action occurs when HROs achieve an attentive yet flexible focus capable of incorporating multiple—sometimes competing—realities in order to assess alternative solutions and take action in dynamic situations. By providing a more nuanced conceptualization of the links between individual mindfulness attributes and collective mindfulness influences, this paper opens up new avenues of discovery for a wide range of reliability-seeking organizations.This study of US Navy Sea Air and Land (SEAL) commandos contributes to research investigating mindfulness in High-Reliability Organizations (HROs) by identifying the individual and collective influences that allow SEALs to build capacity for mindful behaviors despite the complexity of their missions, the unpredictability of their operating environments, and the danger inherent in their work. Although the HRO literature identifies a number of hallmarks of reliability, less attention is paid to how mindfulness is operationally achieved in situ by individuals on the frontline working in HROs. This study addresses this gap using a multi-phase, multi-method investigation of US Navy SEALs, identifying new links between individual mindfulness attributes (comfort with uncertainty and chaos) and collective mindfulness influences (a positive orientation towards failure) that combine to co-create a phenomenon we call 'mindfulness in action'. Mindfulness in action occurs when HROs achieve an attentive yet flexible focus capable of incorporating multiple—sometimes competing—realities in order to assess alternative solutions and take action in dynamic situations. By providing a more nuanced conceptualization of the links between individual mindfulness attributes and collective mindfulness influences, this paper opens up new avenues of discovery for a wide range of reliability-seeking organizations

    A community of practice or a working psychological group? Group dynamics in core and peripheral community participation

    Get PDF
    The concept of communities of practice (CoP) has become increasingly influential in management literature. Yet, many scholars regard the term as too homogenous and lacking in empirical support. Our study explores the Silver Academy, a project involving over 100 unemployed and self-employed managers over the age of 50, who came together with the purpose of sharing knowledge and experience in starting up their own businesses. The study shows how the Academy matches the notion of CoP including mutual relationships, shared engagement and a common consensus of membership. However, applying Bion’s (1961) theory of groups, we challenge the homogenous and consensual notion of a community of practice, illustrating how, through unconscious group processes, some group members exhibit workgroup mentality and the capacity for realistic hard work (and leadership), while others are caught in a basic-assumption mentality, prone to feelings of anxiety, guilt and depression. This is particularly so for a group that has gone through the recent trauma of unemployment

    Multiple uses of fibrin sealant for nervous system treatment following injury and disease

    Full text link

    Zebrafish regenerate full thickness optic nerve myelin after demyelination, but this fails with increasing age

    Get PDF
    INTRODUCTION: In the human demyelinating central nervous system (CNS) disease multiple sclerosis, remyelination promotes recovery and limits neurodegeneration, but this is inefficient and always ultimately fails. Furthermore, these regenerated myelin sheaths are thinner and shorter than the original, leaving the underlying axons potentially vulnerable. In rodent models, CNS remyelination is more efficient, so that in young animals (but not old) the number of myelinated axons is efficiently restored to normal, but in both young and old rodents, regenerated myelin sheaths are still short and thin. The reasons for these differences in remyelination efficiency, the thinner remyelinated myelin sheaths compared to developmental myelin and the subsequent effect on the underlying axon are unclear. We studied CNS remyelination in the highly regenerative adult zebrafish (Danio rerio), to better understand mechanisms of what we hypothesised would be highly efficient remyelination, and to identify differences to mammalian CNS remyelination, as larval zebrafish are increasingly used for high throughput screens to identify potential drug targets to improve myelination and remyelination. RESULTS: We developed a novel method to induce a focal demyelinating lesion in adult zebrafish optic nerve with no discernible axonal damage, and describe the cellular changes over time. Remyelination is indeed efficient in both young and old adult zebrafish optic nerves, and at 4 weeks after demyelination, the number of myelinated axons is restored to normal, but internode lengths are short. However, unlike in rodents or in humans, in young zebrafish these regenerated myelin sheaths were of normal thickness, whereas in aged zebrafish, they were thin, and remained so even 3 months later. This inability to restore normal myelin thickness in remyelination with age was associated with a reduced macrophage/microglial response. CONCLUSION: Zebrafish are able to efficiently restore normal thickness myelin around optic nerve axons after demyelination, unlike in mammals. However, this fails with age, when only thin myelin is achieved. This gives us a novel model to try and dissect the mechanism for restoring myelin thickness in CNS remyelination. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40478-014-0077-y) contains supplementary material, which is available to authorized users

    Schwann cell invasion of the conus medullaris: case report

    No full text

    Schwann cells: Rescuers of central demyelination

    No full text
    International audienceThe presence of peripheral myelinating cells in the central nervous system (CNS) has gained the neurobiologist attention over the years. Despite the confirmed presence of Schwann cells in the CNS in pathological conditions, and the long list of their beneficial effects on central remyelination, the cues that impede or allow Schwann cells to successfully conquer and remyelinate central axons remain partially undiscovered. A better knowledge of these factors stands out as crucial to foresee a rational therapeutic approach for the use of Schwann cells in CNS repair. Here, we review the diverse origins of Schwann cells into the CNS, both peripheral and central, as well as the CNS components that inhibit Schwann survival and migration into the central parenchyma. Namely, we analyze the astrocyte- and the myelin-derived components that restrict Schwann cells into the CNS. Finally, we highlight the unveiled mode of invasion of these peripheral cells through the central environment, using blood vessels as scaffolds to pave their ways toward demyelinated lesions. In short, this review presents the so far uncovered knowledge of this complex CNS-peripheral nervous system (PNS) relationship
    corecore