5,534 research outputs found

    A multi-objective genetic algorithm for the design of pressure swing adsorption

    Get PDF
    Pressure Swing Adsorption (PSA) is a cyclic separation process, more advantageous over other separation options for middle scale processes. Automated tools for the design of PSA processes would be beneficial for the development of the technology, but their development is a difficult task due to the complexity of the simulation of PSA cycles and the computational effort needed to detect the performance at cyclic steady state. We present a preliminary investigation of the performance of a custom multi-objective genetic algorithm (MOGA) for the optimisation of a fast cycle PSA operation, the separation of air for N2 production. The simulation requires a detailed diffusion model, which involves coupled nonlinear partial differential and algebraic equations (PDAEs). The efficiency of MOGA to handle this complex problem has been assessed by comparison with direct search methods. An analysis of the effect of MOGA parameters on the performance is also presented

    Nucleation in the chiral transition with an inhomogeneous background

    Get PDF
    We consider an approximation procedure to evaluate the finite-temperature one-loop fermionic density in the presence of a chiral background field which systematically incorporates effects from inhomogeneities in the chiral field through a derivative expansion. Modifications in the effective potential and their consequences for the bubble nucleation process are discussed.Comment: 4 pages, 4 figures. To appear in the proceedings of I Latin American Workshop on High Energy Phenomenology (LAWHEP 2005), Porto Alegre, Brazil, 1-3 Dec 200

    On thermal nucleation of quark matter in compact stars

    Full text link
    The possibility of a hadron-quark phase transition in extreme astrophysical phenomena such as the collapse of a supernova is not discarded by the modern knowledge of the high-energy nuclear and quark-matter equations of state. Both the density and the temperature attainable in such extreme processes are possibly high enough to trigger a chiral phase transition. However, the time scales involved are an important issue. Even if the physical conditions for the phase transition are favorable (for a system in equilibrium), there may not be enough time for the dynamical process of phase conversion to be completed. We analyze the relevant time scales for the phase conversion via thermal nucleation of bubbles of quark matter and compare them to the typical astrophysical time scale, in order to verify the feasibility of the scenario of hadron-quark phase conversion during, for example, the core-collapse of a supernova.Comment: 6 pages, 4 figures, talk given at the International Conference SQM2009, Buzios, Rio de Janeiro, Brazil, Sep.27-Oct.2, 200

    Fixing fluency: Neurocognitive assessment of a dysfluent reading intervention

    Get PDF
    The ability to read is essential to attain society’s literacy demands. Unfortunately, a significant percentage of the population experiences major difficulties in mastering reading and spelling skills. Individuals diagnosed with developmental dyslexia are at severe risk for adverse academic, economic, and psychosocial consequences, thus requiring clinical intervention. To date, there is no effective remediation for the lack of reading fluency, which remains as the most persistent symptom in dyslexia. This thesis aims at identifying factors involved in the failure to develop a functional reading network as well as factors of treatment success in addressing the notorious ‘fluency barrier’ in dyslexia. The present work combines a theoretical framework of dyslexia based on the multisensory integration deficit with recent advances in our knowledge of the brain networks specialized for reading. This thesis uses a longitudinal design including both behavioral and neurophysiological measures in dyslexics at 3rd grade of school. Between measurements, we provide an intervention aimed at improving reading fluency by training automation of letter-speech sound mappings. The studies presented in this thesis contribute to our understanding of dyslexics’ deficits and their remediation

    Dissipation and memory effects in pure glue deconfinement

    Full text link
    We investigate the effects of dissipation in the deconfining transition for a pure SU(2) gauge theory. Using an effective model for the order parameter, we study its Langevin evolution numerically, and compare results from local additive noise dynamics to those obtained considering an exponential non-local kernel for early times.Comment: 4 pages, 2 figures, to appear in the proceedings of Strong and Electroweak Matter (SEWM06), BNL, May 200

    Asteroseismological study of massive ZZ Ceti stars with fully evolutionary models

    Get PDF
    We present the first asteroseismological study for 42 massive ZZ Ceti stars based on a large set of fully evolutionary carbon−-oxygen core DA white dwarf models characterized by a detailed and consistent chemical inner profile for the core and the envelope. Our sample comprise all the ZZ Ceti stars with spectroscopic stellar masses between 0.72 and 1.05M⊙1.05M_{\odot} known to date. The asteroseismological analysis of a set of 42 stars gives the possibility to study the ensemble properties of the massive pulsating white dwarf stars with carbon−-oxygen cores, in particular the thickness of the hydrogen envelope and the stellar mass. A significant fraction of stars in our sample have stellar mass high enough as to crystallize at the effective temperatures of the ZZ Ceti instability strip, which enables us to study the effects of crystallization on the pulsation properties of these stars. Our results show that the phase diagram presented in Horowitz et al. (2010) seems to be a good representation of the crystallization process inside white dwarf stars, in agreement with the results from white dwarf luminosity function in globular clusters.Comment: 58 pages, 11 figures, accepted in Ap

    Treatment of bimodality in proficiency test of pH in bioethanol matrix

    Full text link
    The pH value in bioethanol is a quality control parameter related to its acidity and to the corrosiveness of vehicle engines when it is used as fuel. In order to verify the comparability and reliability of the measurement of pH in bioethanol matrix among some experienced chemical laboratories, reference material (RM) of bioethanol developed by Inmetro - the Brazilian National Metrology Institute - was used in a proficiency testing (PT) scheme. There was a difference of more than one unit in the value of the pH measured due to the type of internal filling electrolytic solutions (potassium chloride, KCl or lithium chloride, LiCl) from the commercial pH combination electrodes used by the participant laboratories. Therefore, bimodal distribution has occurred from the data of this PT scheme. This work aims to present the possibilities that a PT scheme provider can use to overcome the bimodality problem. Data from the PT of pH in bioethanol were treated by two different statistical approaches: kernel density model and the mixture of distributions. Application of these statistical treatments improved the initial diagnoses of PT provider, by solving bimodality problem and contributing for a better performance evaluation in measuring pH of bioethanol.Comment: 20 pages, 6 figures, Accepted for publication in Accreditation and Quality Assurance (ACQUAL
    • …
    corecore