29 research outputs found

    Biological Activity of Hydrophilic Extract of Chlorella vulgaris Grown on Post-Fermentation Leachate from a Biogas Plant Supplied with Stillage and Maize Silage

    Get PDF
    Algae are employed commonly in cosmetics, food and pharmaceuticals, as well as in feed production and biorefinery processes. In this study, post-fermentation leachate from a biogas plant which exploits stillage and maize silage was utilized as a culture medium forChlorella vulgaris. The content of polyphenols in hydrophilic extracts of the Chlorella vulgaris biomass was determined, and the extracts were evaluated for their antioxidant activity (DPPH assay), antibacterial activity (against Escherichia coli, Lactobacillus plantarum, Staphylococcus aureus, Staphylococcus epidermidis) and antifungal activity (against Aspergillus niger, Candida albicans, Saccharomyces cerevisiae). The use of the post-fermentation leachate was not found to affect the biological activity of the microalgae. The aqueous extract of Chlorella vulgaris biomass was also observed to exhibit activity against nematodes. The results of this study suggest that Chlorella vulgaris biomass cultured on post-fermentation leachate from a biogas plant can be successfully employed as a source of natural antioxidants, food supplements, feed, natural antibacterial and antifungal compounds, as well as in natural methods of plant protection

    Search for fibrous aggregates potentially useful in regenerative medicine formed under physiological conditions by self-assembling short peptides containing two identical aromatic amino acid residues

    Get PDF
    This study investigates the propensity of short peptides to self-organize and the influence of aggregates on cell cultures. The dipeptides were derived from both enantiomers of identical aromatic amino acids and tripeptides were prepared from two identical aromatic amino acids with one cysteine or methionine residue in the C-terminal, N-terminal, or central position. The formation or absence of fibrous structures under physiological conditions was established using Congo Red and Thioflavine T assays as well as by microscopic examination using normal and polarized light. The in vitro stability of the aggregates in buffered saline solution was assessed over 30 days. Materials with potential for use in regenerative medicine were selected based on the cytotoxicity of the peptides to the endothelial cell line EA.hy 926 and the wettability of the surfaces of the films, as well as using scanning electron microscopy. The criteria were fulfilled by H-dPhedPhe-OH, H-dCysdPhedPhe-OH, H-CysTyrTyr-OH, H-dPhedPhedCys-OH, H-TyrTyrMet-OH, and H鈥揟yrMetTyr鈥揙H. Our preliminary results suggest that the morphology and cell viability of L919 fibroblast cells do not depend on the stereochemistry of the self-organizing peptides

    <i>N</i>-Lipidated Amino Acids and Peptides Immobilized on Cellulose Able to Split Amide Bonds

    No full text
    N-lipidated short peptides and amino acids immobilized on the cellulose were used as catalysts cleaved amide bonds under biomimetic conditions. In order to select catalytically most active derivatives a library of 156 N-lipidated amino acids, dipeptides and tripeptides immobilized on cellulose was obtained. The library was synthesized from serine, histidine and glutamic acid peptides N-acylated with heptanoic, octanoic, hexadecanoic and (E)-octadec-9-enoic acids. Catalytic efficiency was monitored by spectrophotometric determination of p-nitroaniline formed by the hydrolysis of a 0.1 M solution of Z-Leu-NP. The most active 8 structures contained tripeptide fragment with 1-3 serine residues. It has been found that incorporation of metal ions into catalytic pockets increase the activity of the synzymes. The structures of the 17 most active catalysts selected from the library of complexes obtained with Cu2+ ion varied from 16 derivatives complexed with Zn2+ ion. For all of them, a very high reaction rate during the preliminary phase of measurements was followed by a substantial slowdown after 1 h. The catalytic activity gradually diminished after subsequent re-use. HPLC analysis of amide bond splitting confirmed that substrate consumption proceeded in two stages. In the preliminary stage 24&#8315;40% of the substrate was rapidly hydrolysed followed by the substantially lower reaction rate. Nevertheless, using the most competent synzymes product of hydrolysis was formed with a yield of 60&#8315;83% after 48h under mild and strictly biomimetic conditions

    Cellulose as a matrix for synthesis of the library of molecular receptors useful for screening of antihistamine compounds

    No full text

    Orthogonal Functionalization of Nanodiamond Particles after Laser Modification and Treatment with Aromatic Amine Derivatives

    No full text
    A laser system with a wavelength of 1064 nm was used to generate sp2 carbon on the surfaces of nanodiamond particles (NDPs). The modified by microplasma NDPs were analysed using FT-IR and Raman spectroscopy. Raman spectra confirmed that graphitization had occurred on the surfaces of the NDPs. The extent of graphitization depended on the average power used in the laser treatment process. FT-IR analysis revealed that the presence of C=C bonds in all spectra of the laser-modified powder. The characteristic peaks for olefinic bonds were much more intense than in the case of untreated powder and grew in intensity as the average laser power increased. The olefinized nanodiamond powder was further functionalized using aromatic amines via in situ generated diazonium salts. It was also found that isokinetic mixtures of structurally diverse aromatic amines containing different functional groups (acid, amine) could be used to functionalize the surfaces of the laser-modified nanoparticles leading to an amphiphilic carbon nanomaterial. This enables one-step orthogonal functionalization and opens the possibility of selectively incorporating molecules with diverse biological activities on the surfaces of NDPs. Modified NDPs with amphiphilic properties resulting from the presence carboxyl and amine groups were used to incorporate simultaneously folic acid (FA-CONH-(CH2)5-COOH) and 5(6)-carboxyfluorescein (FL-CONH-(CH2)2-NH2) derivatives on the surface of material under biocompatible procedures

    Molecular Fingerprints of Thyroid Cancer Cells by Using Library of Molecular Receptors Formed by N-Lipidated Peptides Immobilized on Cellulose

    No full text
    A novel diagnostic method based on recognition of qualitative and quantitative composition of healthy and tumor tissue samples by library of molecular receptors was presented. Molecular receptors were formed by self-organization of N-lipidated peptides attached in the regular fashion via aminophenylamino-1,3,5-triazine linker to the surface of cellulose plate. For samples testing, the library was cloned into multiple, identical copies and for each experiment the new clone was used. The binding process was monitored by staining the discs with Brilliant Black and quantitative color measurement was performed in 256 grade gray scale. Substantial differences in the composition of healthy and tumor samples were observed in most cases. The highly individual chemical fingerprints were found to be reliant on the cancer type. For malignant papillary thyroid cancer statistical analysis identified two receptors most useful for diagnostic purposes

    Detonation nanodiamond particles modified by non-steroidal anti-inflammatory drugs in vitro examination

    No full text
    Most recently it has been found that nanodiamond particles have very interesting properties. There are number of research communications that detonation nanodiamond particles (NDPs) are fairly reactive and their surface can be effectively modified by chemical methods. The hydroxyl-modified NDPs were obtained by Fenton reaction, amine-functionalized NDPs were obtained by chemical reduction of the nitro- -functionalized surface and carboxyl-modified NDPs by oxidation by using H2O2 under acidic conditions. NDPs functionalized by hydroxyl- and amine- groups and amino groups were used for covalent binding of non-steroidal anti-inflammatory pharmaceuticals (aspirin, ketoprofen, ibuprofen, naproxen) via ester or amide bonds. These results of the studies proved the activity of the conjugates of active substance-NDP and study the rate of release of active substance from the NDPs surface by in vitro examinations with mouse fibroblasts. The progress of the reaction and the characteristics of the products were determined by using FT-IR. Chemical and physical structures of materials were also investigated by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). DRIFT spectra show the modification of nanodiamond by ketoprofen, naproxen, ibuprofen and aspirin
    corecore