1,075 research outputs found

    ENSO hindcast skill in the DWD - MPI-M - UHH seasonal prediction system

    Get PDF
    KlimawandelWe present an assessment of the El Niño Southern Oscillation (ENSO) hindcast skill in the DWD - MPI-M - UHH seasonal prediction system based on the earth system model MPI-ESM. The system is initialised from re-analysis in the atmospheric, oceanic and sea-ice component of the model. We use a hindcast ensemble with semi-annual start dates between 1981 and 2014 (10 member ensembles started every May and November for 6 months each). We find hindcast skill for Niño 3.4 sea surface temperatures up to 6 months ahead. Hindcast skill is higher for November start dates than for May start dates. In addition to the Niño 3.4 Index, we also assess hindcast skill for Niño3, the West Pacific Warm Water Volume and the zonal wind variability. In particular we focus on the difference in the hindcast skill in the May start dates for the 1997/98 and the 2014 November conditions - though for these two periods overall similar conditions were observed, the subsequent development with a strong El Niño in 1997/98 and a very weak El Niño in 2014 differed considerably

    Jahreszeitenvorhersagen mit dem DWD - MPI-M - UHH Vorhesagesystem

    Get PDF
    KlimawandelWir stellen erste Ergebnisse des präoperationellen Systems für Jahreszeitenvorhersagen vor. Dieses System wurde gemeinsam vom Deutschen Wetterdienst, dem MPI-M und der Universität Hamburg entwickelt und beruht auf dem MPI-ESM-LR in einer CMIP5 nahen Version. Es soll als deutscher Beitrag zum internationalen Multi-Modell Ensemble EUROSIP beitragen. Jahreszeitenvorhersagen werden als probabilistische Trendprognosen erstellt. Es ist deshalb erforderlich, für jeden Vorhersagezeitraum eine Klimatologie im Ensemble zur Verfügung zu haben, sogenannte Hindcasts. Die Erzeugung der Anfangsbedingungen der Hindcasts und Forecasts geschieht durch Datenassimilation, hier durch Nudging wichtiger Variablen in Atmosphäre, Ozean und Meereis. Das Ensemble wird durch die Technik des Breedings und der Variation eines Physikparameters generiert (Baehr et al, 2014). Diskutiert werden Qualitätsmetriken (skill scores) des Systems. Vorgestellt werden auch Prozeßstudien zur Vorhersagefähigkeit des Klima-Vorhersagesystem im Hinblick auf verschiedene relevante saisonale Ereignisse

    Seasonal Predictability over Europe Arising from El Nino and Stratospheric Variability in the MPI-ESM Seasonal Prediction System

    Get PDF
    Predictability on seasonal time scales over the North Atlantic–Europe region is assessed using a seasonal prediction system based on an initialized version of the Max Planck Institute Earth System Model (MPI-ESM). For this region, two of the dominant predictors on seasonal time scales are El Niño–Southern Oscillation (ENSO) and sudden stratospheric warming (SSW) events. Multiple studies have shown a potential for improved North Atlantic predictability for either predictor. Their respective influences are however difficult to disentangle, since the stratosphere is itself impacted by ENSO. Both El Niño and SSW events correspond to a negative signature of the North Atlantic Oscillation (NAO), which has a major influence on European weather. This study explores the impact on Europe by separating the stratospheric pathway of the El Niño teleconnection. In the seasonal prediction system, the evolution of El Niño events is well captured for lead times of up to 6 months, and stratospheric variability is reproduced with a realistic frequency of SSW events. The model reproduces the El Niño teleconnection through the stratosphere, involving a deepened Aleutian low connected to a warm anomaly in the northern winter stratosphere. The stratospheric anomaly signal then propagates downward into the troposphere through the winter season. Predictability of 500-hPa geopotential height over Europe at lead times of up to 4 months is shown to be increased only for El Niño events that exhibit SSW events, and it is shown that the characteristic negative NAO signal is only obtained for winters also containing major SSW events for both the model and the reanalysis data

    Pluto: a Monte Carlo simulation tool for hadronic physics

    Get PDF
    Pluto is a Monte-Carlo event generator designed for hadronic interactions from Pion production threshold to intermediate energies of a few GeV per nucleon, as well as for studies of heavy ion reactions. The package is entirely based on ROOT, without the need of additional packages, and uses the embedded C++ interpreter of ROOT to control the event production. The generation of events based on a single reaction chain and the storage of the resulting particle objects can be done with a few lines of a ROOT-macro. However, the complete control of the package can be taken over by the steering macro and user-defined models may be added without a recompilation of the framework. Multi-reaction cocktails can be facilitated as well using either mass-dependent or user-defined static branching ratios. The included physics uses resonance production with mass-dependent Breit-Wigner sampling. The calculation of partial and total widths for resonances producing unstable particles is performed recursively in a coupled-channel approach. Here, particular attention is paid to the electromagnetic decays, motivated by the physics program of HADES. The thermal model supports 2-component thermal distributions, longitudinal broadening, radial blast, direct and elliptic flow, and impact-parameter sampled multiplicities. The interface allows angular distribution models (e.g. for the primary meson emission) to be attached by the user as well as descriptions of multi-particle correlations using decay chain templates. The exchange of mass sampling or momentum generation models is also possible. The first feature allows for consistent coupled-channel calculations, needed for a correct description of hadronic interactions. For elementary reactions, angular distribution models for selected channels are already part of the framework, based on parameterizations of existing data. This report gives an overview of the design of the package, the included models and the user interface

    Validity of inertial sensor based 3D joint kinematics of static and dynamic sport and physiotherapy specific movements

    Get PDF
    3D joint kinematics can provide important information about the quality of movements. Optical motion capture systems (OMC) are considered the gold standard in motion analysis. However, in recent years, inertial measurement units (IMU) have become a promising alternative. The aim of this study was to validate IMU-based 3D joint kinematics of the lower extremities during different movements. Twenty-eight healthy subjects participated in this study. They performed bilateral squats (SQ), single-leg squats (SLS) and countermovement jumps (CMJ). The IMU kinematics was calculated using a recently-described sensor-fusion algorithm. A marker based OMC system served as a reference. Only the technical error based on algorithm performance was considered, incorporating OMC data for the calibration, initialization, and a biomechanical model. To evaluate the validity of IMU-based 3D joint kinematics, root mean squared error (RMSE), range of motion error (ROME), Bland-Altman (BA) analysis as well as the coefficient of multiple correlation (CMC) were calculated. The evaluation was twofold. First, the IMU data was compared to OMC data based on marker clusters; and, second based on skin markers attached to anatomical landmarks. The first evaluation revealed means for RMSE and ROME for all joints and tasks below 3°. The more dynamic task, CMJ, revealed error measures approximately 1° higher than the remaining tasks. Mean CMC values ranged from 0.77 to 1 over all joint angles and all tasks. The second evaluation showed an increase in the RMSE of 2.28°– 2.58° on average for all joints and tasks. Hip flexion revealed the highest average RMSE in all tasks (4.87°– 8.27°). The present study revealed a valid IMU-based approach for the measurement of 3D joint kinematics in functional movements of varying demands. The high validity of the results encourages further development and the extension of the present approach into clinical settings

    Effects of an Impulse Frequency Dependent 10-Week Whole-body Electromyostimulation Training Program on Specific Sport Performance Parameters

    Get PDF
    The difference in the efficacy of altered stimulation parameters in whole-body-electromyostimulation (WB-EMS) training remains largely unexplored. However, higher impulse frequencies (>50 Hz) might be most adequate for strength gain. The aim of this study was to analyze potential differences in sports-related performance parameters after a 10-week WB-EMS training with different frequencies. A total of 51 untrained participants (24.9 ± 3.9 years, 174 ± 9 cm, 72.4 ± 16.4 kg, BMI 23.8 ± 4.1, body fat 24.7 ± 8.1 %) was randomly divided into three groups: one inactive control group (CON) and two training groups. They completed a 10-week WB-EMS program of 1.5 sessions/week, equal content but different stimulation frequencies (training with 20 Hz (T20) vs. training with 85 Hz (T85)). Before and after intervention, all participants completed jumping (Counter Movement Jump (CMJ), Squat Jump (SJ), Drop Jump (DJ)), sprinting (5m, 10m, 30m), and strength tests (isometric trunk flexion/extension). One-way ANOVA was applied to calculate parameter changes. Post-hoc least significant difference tests were performed to identify group differences. Significant differences were identified for CMJ (p = 0.007), SJ (p = 0.022), trunk flexion (p = 0.020) and extension (p=.013) with significant group differences between both training groups and CON (not between the two training groups T20 and T85). A 10-week WB-EMS training leads to significant improvements of jump and strength parameters in untrained participants. No differences could be detected between the frequencies. Therefore, both stimulation frequencies can be regarded as adequate for increasing specific sport performance parameters. Further aspects as regeneration or long term effects by the use of different frequencies still need to be clarified

    Failure of the Regge approach in two dimensional quantum gravity

    Full text link
    Regge's method for regularizing euclidean quantum gravity is applied to two dimensional gravity. We use two different strategies to simulate the Regge path integral at a fixed value of the total area: A standard Metropolis simulation combined with a histogramming method and a direct simulation using a Hybrid Monte Carlo algorithm. Using topologies with genus zero and two and a scale invariant integration measure, we show that the Regge method does not reproduce the value of the string susceptibility of the continuum model. We show that the string susceptibility depends strongly on the choice of the measure in the path integral. We argue that the failure of the Regge approach is due to spurious contributions of reparametrization degrees of freedom to the path integral.Comment: 27 pages, LaTex + uuencoded figure files (13 postscript files
    corecore