74 research outputs found

    The Five AhMTP1 Zinc Transporters Undergo Different Evolutionary Fates towards Adaptive Evolution to Zinc Tolerance in Arabidopsis halleri

    Get PDF
    Gene duplication is a major mechanism facilitating adaptation to changing environments. From recent genomic analyses, the acquisition of zinc hypertolerance and hyperaccumulation characters discriminating Arabidopsis halleri from its zinc sensitive/non-accumulator closest relatives Arabidopsis lyrata and Arabidopsis thaliana was proposed to rely on duplication of genes controlling zinc transport or zinc tolerance. Metal Tolerance Protein 1 (MTP1) is one of these genes. It encodes a Zn2+/H+ antiporter involved in cytoplasmic zinc detoxification and thus in zinc tolerance. MTP1 was proposed to be triplicated in A. halleri, while it is present in single copy in A. thaliana and A. lyrata. Two of the three AhMTP1 paralogues were shown to co-segregate with zinc tolerance in a BC1 progeny from a cross between A. halleri and A. lyrata. In this work, the MTP1 family was characterized at both the genomic and functional levels in A. halleri. Five MTP1 paralogues were found to be present in A. halleri, AhMTP1-A1, -A2, -B, -C, and -D. Interestingly, one of the two newly identified AhMTP1 paralogues was not fixed at least in one A. halleri population. All MTP1s were expressed, but transcript accumulation of the paralogues co-segregating with zinc tolerance in the A. halleri X A. lyrata BC1 progeny was markedly higher than that of the other paralogues. All MTP1s displayed the ability to functionally complement a Saccharomyces cerevisiæ zinc hypersensitive mutant. However, the paralogue showing the least complementation of the yeast mutant phenotype was one of the paralogues co-segregating with zinc tolerance. From our results, the hypothesis that pentaplication of MTP1 could be a major basis of the zinc tolerance character in A. halleri is strongly counter-balanced by the fact that members of the MTP1 family are likely to experience different evolutionary fates, some of which not concurring to increase zinc tolerance

    matscipy : materials science at the atomic scale with Python

    Get PDF
    Behaviour of materials is governed by physical phenomena that occur at an extreme range of length and time scales. Computational modelling requires multiscale approaches. Simulation techniques operating on the atomic scale serve as a foundation for such approaches, providing necessary parameters for upper-scale models. The physical models employed for atomic simulations can vary from electronic structure calculations to empirical force fields. However, construction, manipulation and analysis of atomic systems are independent of the given physical model but dependent on the specific application. matscipy implements such tools for applications in materials science, including fracture, plasticity, tribology and electrochemistry

    Geogenic and atmospheric sources for volatile organic compounds in fumarolic emissions from Mt. Etna and Vulcano Island (Sicily, Italy)

    Get PDF
    In this paper, fluid source(s) and processes controlling the chemical composition of volatile organic compounds (VOCs) in gas discharges from Mt. Etna and Vulcano Island(Sicily, Italy) were investigated. The main composition of the Etnean and Volcano gas emissions is produced by mixing, to various degrees, of magmatic and hydrothermal components. VOCs are dominated by alkanes, alkenes and aromatics, with minor, though significant, concentrations of O-, S- and Cl(F)-substituted compounds. The main mechanism for the production of alkanes is likely related to pyrolysis of organic-matterbearing sediments that interact with the ascending magmatic fluids. Alkanes are then converted to alkene and aromatic compounds via catalytic reactions (dehydrogenation and dehydroaromatization, respectively). Nevertheless, an abiogenic origin for the light hydrocarbons cannot be ruled out. Oxidative processes of hydrocarbons at relatively high temperatures and oxidizing conditions, typical of these volcanic-hydrothermal fluids, may explain the production of alcohols, esters, aldehydes, as well as O- and S-bearing heterocycles. By comparing the concentrations of hydrochlorofluorocarbons (HCFCs) in the fumarolic discharges with respect to those of background air, it is possible to highlight that they have a geogenic origin likely due to halogenation of both methane and alkenes. Finally, chlorofluorocarbon (CFC) abundances appear to be consistent with background air, although the strong air contamination that affects the Mt. Etna fumaroles may mask a possible geogenic contribution for these compounds. On the other hand, no CFCs were detected in the Vulcano gases, which are characterized by low air contribution. Nevertheless, a geogenic source for these compounds cannot be excluded on the basis of the present data

    Impact of a zinc processing factory on surrounding surficial soil contamination

    No full text
    International audienceZn smelting plants located at Auby (Northern France) have strongly polluted the surroundings through dust emissions, storage of ores and slag without strong environmental concerns. Although highly contaminated surficial soils have been removed in the private and public gardens to safeguard health of the inhabitants, one small public area, called the Peru Park, has not been treated because of the presence of peculiar calamine grasslands. Our investigations in the soils of this park clearly evidenced a very strong contamination by several metals with concentrations up to 21,000 mg kg−1 for Zn, 3500 mg kg−1 for Pb and 160 mg kg−1 for Cd. Additionally, the mobility of these metals is important in soils and increases with the pollution level. In the pore waters of strongly polluted zones, our findings are more contrasted with high concentrations of dissolved Zn (3.6–32 mg L−1) and to a lesser extent Cd (0.02–0.25 mg L−1), whereas dissolved Pb remains at low concentrations (0.0001–0.021 mg L−1) and, according to calculations, is quite exclusively bound to humic substances. Finally, this study obviously underlines that this severe pollution and the high mobility of Zn and Cd could strongly impact the surficial aquifer and the trophic chain present in this area

    Relationships of reproductive traits with the phylogeny of the African noctuid stem borers

    No full text
    The display of the reproductive behavior in most noctuid Lepidoptera follows a diel periodicity and is limited to a precise period of either the day or the night. These behavioral traits and the sex pheromone chemistry can be species specific and thus might be linked to the phylogeny. The objective of this study was to test the relationship of these reproductive traits with phylogeny. The study was undertaken using eight closely related species of noctuid stem borers, which are easy to rear under artificial conditions, namely, Busseola fusca, B. nairobica, B. sp. nr. segeta, Manga melanodonta, M. sp. nr. nubifera, Pirateolea piscator, Sesamia calamistis, and S. nonagrioides. For each species, the adult emergence period, the mating time, and the oviposition period were estimated, referred as biological traits. The components of the sex pheromones emitted by the females of each species were also analyzed by gas chromatography–mass spectrometry. Among the biological traits measured, only those linked to the oviposition pattern (timing and egg loads per night) were significantly correlated with the phylogeny of these species. For the sex pheromone components, among the 13 components identified in all species, only four, namely, Z9-tetradecenyl acetate (Z9-TDA), Z11-TDA, E11-TDA, and Z11-hexadecenyl acetate (Z11-HDA), showed the highest significant correlations with the phylogeny. These results suggest that among the different reproductive traits evaluated, only few are phylogenetically constrained. Their involvement in the reinforcement of ecological speciation in noctuid stem borers is discussed

    Variability in pheromone communication among different haplotype populations of Busseola fusca

    No full text
    The relationship between pheromone composition and mitochondrial haplotype clades was investigated by coupling DNA analyses with pheromone identification and male mate searching behavior among different geographic populations of Busseola fusca. The within-population variations in pheromone blend were as great as those observed between geographic populations, suggesting that the female sex pheromone blend was not the basis of reproductive isolation between the geographic clades. Furthermore, while data from wind tunnel experiments demonstrated that most of the tested males were sensitive to small variations in pheromone mixture, there was considerable within-population variability in the observed response. The study identified a new pheromone component, (Z)-11-hexadecen-1-yl acetate, which when added to the currently used three-component synthetic blend resulted in significantly higher traps catches. The new recommended blend for monitoring flight phenology and for timing control measures for optimal efficacy of B. fusca is (Z)-11-tetradecen-1-yl acetate (62%), (E)-11-tetradecen-1-yl acetate (15%), (Z)-9-tetradecen-1-yl acetate (13%), and (Z)-11-hexadecen-1-yl acetate (10%)
    • …
    corecore