28 research outputs found

    Regulation of the DH-PH tandem of guanine nucleotide exchange factor for Rho GTPases by phosphoinositides.

    No full text
    International audienceRho GTPases act as molecular switches central in cellular processes such as cytoskeleton dynamics, migration, cell proliferation, growth or survival. Their activation is tightly regulated downstream of cell surface receptors by Guanine nucleotide Exchange Factors (GEFs), that are responsible for the specificity, the accuracy, and the spatial restriction of Rho GTPases response to extracellular cues. Because there is about four time more RhoGEFs that Rho GTPases, and GEFs do not always show a strict specificity for GTPases, it is clear that their regulation depends on specific interactions with the subcellular environment. RhoGEFs bear a peculiar structure, highly conserved though evolution, consisting of a DH-PH tandem, the DH (Dbl homology) domain being responsible for the exchange activity. The function of the PH (Pleckstrin homology) domain known to bind phosphoinositides, however, remains elusive, and reports are in many cases rather confusing. This review summarizes data on the regulation of RhoGEFs activity through interaction of the PH-associated DH domain with phosphoinositides which are considered as critical players in the spatial organization of major signaling pathways

    Phosphoinositides and cellular pathogens.

    No full text
    International audiencePhosphoinositides are considered as highly dynamic players in the spatiotemporal organization of key signaling pathways, actin cytoskeleton rearrangements, establishment of cell polarity and intracellular vesicle trafficking. Their metabolism is accurately controlled and mutations in several phosphoinositide metabolizing enzymes take part in the development of human pathologies. Interestingly, evidence is accumulating that modulation of the phosphoinositide metabolism is critical for pathogenicity and virulence of many human pathogens. Given the importance of phosphoinositides, which link membrane and cytoskeleton dynamics to cell responses, it is not surprising that many invasive pathogens hijack their metabolism as part of their strategies to establish infection. In fact, according to their lifestyle, cellular pathogens use the phosphoinositide metabolism in order to trigger their uptake in nonphagocytic cells and/or modulate the maturation of the pathogen-containing vacuole to establish their replicative niche or escape in the cytosol and promote host cell survival. The last two decades have been marked by the discovery of different tactics used by cellular pathogens to modulate the phosphoinositide metabolism as part of their strategies to survive, proliferate and disseminate in a hostile environment

    A novel mass assay to quantify the bioactive lipid PtdIns3P in various biological samples.

    Get PDF
    International audiencePtdIns3P is recognized as an important player in the control of the endocytotic pathway and in autophagy. Recent data also suggest that PtdIns3P contributes to molecular mechanisms taking place at the plasma membrane and at the midbody during cytokinesis. This lipid is present in low amounts in mammalian cells and remains difficult to quantify either by traditional techniques based on radiolabelling followed by HPLC to separate the different phosphatidylinositol monophosphates, or by high-sensitive liquid chromatography coupled to MS, which is still under development. In the present study, we describe a mass assay to quantify this lipid from various biological samples using the recombinant PtdIns3P 5-kinase, PIKfyve. Using this assay, we show an increase in the mass level of PtdIns3P in mouse and human platelets following stimulation, loss of this lipid in Vps34-deficient yeasts and its relative enrichment in early endosomes isolated from BHK cells
    corecore