20 research outputs found
The Mediator complex subunit MED25 is targeted by the N-terminal transactivation domain of the PEA3 group members
International audiencePEA3, ERM and ER81 belong to the PEA3 subfamily of Ets transcription factors and play important roles in a number of tissue-specific processes. Transcriptional activation by PEA3 subfamily factors requires their characteristic amino-terminal acidic transactivation domain (TAD). However, the cellular targets of this domain remain largely unknown. Using ERM as a prototype, we show that the minimal N-terminal TAD activates transcription by contacting the activator interacting domain (ACID)/Prostate tumor overexpressed protein 1 (PTOV) domain of the Mediator complex subunit MED25. We further show that depletion of MED25 disrupts the association of ERM with the Mediator in vitro . Small interfering RNA-mediated knockdown of MED25 as well as the overexpression of MED25-ACID and MED25-VWA domains efficiently inhibit the transcriptional activity of ERM. Moreover, mutations of amino acid residues that prevent binding of MED25 to ERM strongly reduce transactivation by ERM. Finally we show that siRNA depletion of MED25 diminishes PEA3-driven expression of MMP-1 and Mediator recruitment. In conclusion, this study identifies the PEA3 group members as the first human transcriptional factors that interact with the MED25 ACID/PTOV domain and establishes MED25 as a crucial transducer of their transactivation potential
Conserved Omp85 lid-lock structure and substrate recognition in FhaC
Omp85 proteins mediate translocation of polypeptide substrates across and into cellular membranes. They share a common architecture comprising substrate-interacting POTRA domains, a C-terminal 16-stranded β-barrel pore and two signature motifs located on the inner barrel wall and at the tip of the extended L6 loop. The observation of two distinct conformations of the L6 loop in the available Omp85 structures previously suggested a functional role of conformational changes in L6 in the Omp85 mechanism. Here we present a 2.5 Å resolution structure of a variant of the Omp85 secretion protein FhaC, in which the two signature motifs interact tightly and form the conserved 'lid lock'. Reanalysis of previous structural data shows that L6 adopts the same, conserved resting state position in all available Omp85 structures. The FhaC variant structure further reveals a competitive mechanism for the regulation of substrate binding mediated by the linker to the N-terminal plug helix H1
Single-Molecule Force Spectroscopy of Mycobacterial Adhesin-Adhesin Interactionsâ–¿
The heparin-binding hemagglutinin (HBHA) is one of the few virulence factors identified for Mycobacterium tuberculosis. It is a surface-associated adhesin that expresses a number of different activities, including mycobacterial adhesion to nonphagocytic cells and microbial aggregation. Previous evidence indicated that HBHA is likely to form homodimers or homopolymers via a predicted coiled-coil region located within the N-terminal portion of the molecule. Here, we used single-molecule atomic-force microscopy to measure individual homophilic HBHA-HBHA interaction forces. Force curves recorded between tips and supports derivatized with HBHA proteins exposing their N-terminal domains showed a bimodal distribution of binding forces reflecting the formation of dimers or multimers. Moreover, the binding peaks showed elongation forces that were consistent with the unfolding of α-helical coiled-coil structures. By contrast, force curves obtained for proteins exposing their lysine-rich C-terminal domains showed a broader distribution of binding events, suggesting that they originate primarily from intermolecular electrostatic bridges between cationic and anionic residues rather than from specific coiled-coil interactions. Notably, similar homophilic HBHA-HBHA interactions were demonstrated on live mycobacteria producing HBHA, while they were not observed on an HBHA-deficient mutant. Together with the fact that HBHA mediates bacterial aggregation, these observations suggest that the single homophilic HBHA interactions measured here reflect the formation of multimers that may promote mycobacterial aggregation
Expression and purification in high yield of a functionally active recombinant human Type I inositol(1,4,5)P3 5-phosphatase.
Inositol polyphosphates are the most widespread second messenger molecules in eukaryotic cells. Human Type I inositol 1,4,5-triphosphate (Ins(1,4,5)P(3)) 5-phosphatase removes the D-5 position phosphate from soluble Ins(1,4,5)P(3,) a key event in cell signaling particularly in Ca(2+) homeostasis. In this study, the cDNA encoding human Type I Ins(1,4,5)P(3) 5-phosphatase was subcloned into a modified pMAL expression vector. This plasmid produces a recombinant protein in fusion with affinity tags located at its N-terminus, consisting in a maltose binding protein (MPB) and an octa-histidine stretch. The construction was transformed into Escherichia coli BL21 (DE3) expression strain. This dual tag strategy allows the purification of milligrams of highly purified protein. The recombinant human Type I Ins(1,4,5)P(3) 5-phosphatase is active and can thus be used for functional and structural studies.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
Purification of SUMO-1 modified IκBα and complex formation with NF-κB.
Covalent modification of proteins with SUMO (Small Ubiquitin-like MOdifier) affects many cellular processes, including transcriptional regulation, DNA repair and signal transduction. Although hundreds of SUMO targets have been identified, many biological outcomes of protein sumoylation remain poorly understood. In particular, biochemical and structural analysis can only be easily conducted if highly pure sumoylated substrates are available. Purification of sumoylated substrates in vitro or in bacteria have been previously reported but separating the sumoylated protein from the undesired unmodified fraction is often technically challenging, inefficient and time consuming. Here we develop a new vector system for in vivo sumoylation in Escherichia coli which improves purification of sumoylated proteins. We describe the purification of IκBα, its sumoylation, the subsequent separation and purification of the modified and the unmodified forms and the purification of the complex IκBα-SUMO-1/NF-κB. After a first GST affinity chromatography and GST-tag removal, a unique metal-ion affinity chromatography using a 6xHis-SUMO-1 tag results in mgs of highly pure SUMO-1 modified IκBα. Our pure SUMO-1 modified IκB/NF-κB complex could be a useful tool to identify new interaction partner specific of the SUMO-1 modified IκBα form. This approach may be extended to other SUMO substrates not isolable by classical chromatography techniques.JOURNAL ARTICLESCOPUS: ar.jinfo:eu-repo/semantics/publishe
Crystal structure of human Mediator subunit MED23
International audienc
The structural organization of the N-terminus domain of SopB, a virulence factor of Salmonella, depends on the nature of its protein partners
The TTSS is used by Salmonella and many bacterial pathogens to inject virulence factors directly into the cytoplasm of target eukaryotic cells. Once translocated these so-called effector proteins hijack a vast array of crucial cellular functions to the benefit of the bacteria. In the bacterial cytoplasm, some effectors are stabilized and maintained in a secretion competent state by interaction with specific type III chaperones. In this work we studied the conformation of the Chaperone Binding Domain of the effector named Salmonella Outer protein B (SopB) alone and in complex with its cognate chaperone SigE by a combination of biochemical, biophysical and structural approaches. Our results show that the N-terminus part of SopB is mainly composed by α-helices and unfolded regions whose organization/stabilization depends on their interaction with the different partners. This suggests that the partially unfolded state of this N-terminal region, which confers the adaptability of the effector to bind very different partners during the infection cycle, allows the bacteria to modulate numerous host cells functions limiting the number of translocated effectors. © 2013 Elsevier B.V.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
Characterization of the human and mouse ETV1/ER81 transcription factor genes: Role of the two alternatively spliced isoforms in the human
The Ets transcription factors of the PEA3 group - E1AF/PEA3, ETV1/ER81 and ERM - are almost identical in the ETS DNA-binding and the transcriptional acidic domains. To accelerate our understanding of the molecular basis of putative diseases linked to ETV1 such as Ewing's sarcoma we characterized the human ETV1 and the mouse ER81 genes. We showed that these genes are both encoded by 13 exons in more than 90 kbp genomic DNA, and that the classical acceptor and donor splicing sites are present in each junction except for the 5' donor site of intron 9 where GT is replaced by TT. The genomic organization of the ETS and acidic domains in the human ETV1 and mouse ER81 (localized to chromosome 12) genes is similar to that observed in human ERM and human E1AF/PEA3 genes. Moreover, as in human ERM and human E1AF/PEA3 genes, a first untranslated exon is upstream from the first methionine, and the mouse ER81 gene transcription is regulated by a 1.8 kbp of genomic DNA upstream from this exon. In human, the alternative splicing of the ETV1 gene leads to the presence (ETV1α) or the absence (ETV1β) of exon 5 encoding the C-terminal part of the transcriptional acidic domain, but without affecting the alpha helix previously described as crucial for transactivation. We demonstrated here that the truncated isoform (human ETV1β) and the full-length isoform (human ETV1α) bind similarly specific DNA Ets binding sites. Moreover, they both activate transcription similarly through the PKA-transduction pathway, so suggesting that this alternative splicing is not crucial for the function of this protein as a transcription factor. The comparison of human ETV1α and human ETV1β expression in the same tissues, such as the adrenal gland or the bladder, showed no clear-cut differences. Altogether, these data open a new avenue of investigation leading to a better understanding of the functional role of this transcription factor.SCOPUS: ar.jinfo:eu-repo/semantics/publishe