15 research outputs found

    Determination of Potassium Ion Concentration using Paper-Based Devices and Electrochemical Methods

    Get PDF
    poster abstractRapid quantification of ions in bodily fluids can be important for guiding an individual’s nutrition to prevent illness. The level of micronutrients (magnesium, calcium, potassium) is also relevant for diagnostics, such as identifying a health condition. For example, potassium levels in blood below 3 mM can be indicative of abnormal heart rhythms. We are currently working on the detection of potassium on a paper-based device as a proof-of-concept of a novel electrochemical micronutrient sensing platform. Paper-based platforms are useful in bioanalysis for point-of-care measurements because of their simplicity, low cost, portability and disposability. These advantages make them a valid alternative to conventional ionselective electrodes, which are fragile, subject to interference from biological samples, often expensive and require careful calibration and maintenance. Our platform is based on an unusual electrochemical method employing the measurement of the shift in potential of a redox reaction. For potassium quantification, we measured the redox reaction of an electrodeposited Prussian blue layer. The shift in potential is proportional to the concentration of the targeted ion (potassium). We explored the best conditions for electrodepositing Prussian blue using commercial screen-printed electrodes and successfully tested aqueous solutions containing potassium ions in the range of 0 to 1 M. The results in this range show a reliable and reproducible trend correlating the shift in potential and the concentration of potassium. We also verified that sodium ions at high concentration in blood have a negligible interference. The next steps of the project include the validation of the assay on paper-based electrodes, tests of human serum samples throughout the relevant health range (3.5-5 mM) and assessment of the reproducibility and specificity of the platform by considering other potentially interfering ions

    Heat-enhanced peptide synthesis on Teflon-patterned paper

    Get PDF
    In this report, we describe the methodology for 96 parallel organic syntheses of peptides on Teflon-patterned paper assisted by heating with an infra-red lamp. SPOT synthesis is an important technology for production of peptide arrays on a paper-based support for rapid identification of peptide ligands, epitope mapping, and identification of bio-conjugation reactions. The major drawback of the SPOT synthesis methodology published to-date is suboptimal reaction conversion due to mass transport limitations in the unmixed reaction spot. The technology developed in this report overcomes these problems by changing the environment of the reaction from static to dynamic (flow-through), and further accelerating the reaction by selective heating of the reaction support in contact with activated amino acids. Patterning paper with Teflon allows for droplets of organic solvents to be confined in a zone on the paper array and flow through the paper at a well-defined rate and provide a convenient, power-free setup for flow-through solid-phase synthesis and efficient assembly of peptide arrays. We employed an infra-red (IR) lamp to locally heat the cellulosic support during the flow-through delivery of the reagents to each zone of the paper-based array. We demonstrate that IR-heating in solid phase peptide synthesis shortened the reaction time necessary for amide bond formation down to 3 minutes; in some couplings of alpha amino acids, conversion rates increased up to fifteen folds. The IR-heating improved the assembly of difficult sequences, such as homo-oligomers of all 20 natural amino acids

    Reproducible Discovery of Cell-Binding Peptides “Lost” in Bulk Amplification via Emulsion Amplification in Phage Display Panning

    Get PDF
    Many pharmaceutically-relevant cell surface receptors are functional only in the context of intact cells. Phage display, while being a powerful method for the discovery of ligands for purified proteins often fails to identify a diverse set of ligands to receptors on a cell membrane mosaic. To understand this deficiency, we examined growth bias in naïve phage display libraries and observed that it fundamentally changes selection outcomes: The presence of growth-biased (parasite) phage clones in a phage library is detrimental to selection and cell-based panning of such biased libraries is poised to yield ligands from within a small parasite population. Importantly, amplification of phage libraries in water-oil emulsions suppressed the amplification of parasites and steered the selection of biased phage libraries away from parasite population. Attenuation of the growth bias through the use of emulsion amplification reproducibly discovers the ligands for cell-surface receptors that cannot be identified in screen that use conventional ‘bulk’ amplification

    Bottom-Up Fabrication of Plasmonic Nanoantenna-Based High-throughput Multiplexing Biosensors for Ultrasensitive Detection of microRNAs Directly from Cancer Patients’ Plasma

    Get PDF
    There is an unmet need in clinical point-of-care (POC) cancer diagnostics for early state disease detection, which would greatly increase patient survival rates. Currently available analytical techniques for early stage cancer diagnosis do not meet the requirements for POC of a clinical setting. They are unable to provide the high demand of multiplexing, high-throughput, and ultrasensitive detection of biomarkers directly from low volume patient samples (“liquid biopsy”). To overcome these current technological bottle-necks, herein we present, for the first time, a bottom-up fabrication strategy to develop plasmonic nanoantenna-based sensors that utilize the unique localized surface plasmon resonance (LSPR) properties of chemically synthesized gold nanostructures, gold triangular nanoprisms (Au TNPs), gold nanorods (Au NRs), and gold spherical nanoparticles (Au SNPs). Our Au TNPs, NRs, and SNPs display refractive index unit (RIU) sensitivities of 318, 225, and 135 nm/RIU respectively. Based on the RIU results, we developed plasmonic nanoantenna-based multiplexing and high-throughput biosensors for the ultrasensitive assay of microRNAs. MicroRNAs are directly linked with cancer development, progression, and metastasis, thus they hold promise as next generation biomarkers for cancer diagnosis and prognosis. The developed biosensors are capable of assaying five different types of microRNAs at an attomolar detection limit. These sets of microRNAs include both oncogenic and tumor suppressor microRNAs. To demonstrate the efficiency as a POC cancer diagnostic tool, we analyzed the plasma of 20-bladder cancer patients without any sample processing steps. Importantly, our liquid biopsy-based biosensing approach is capable of differentiating healthy from early (“non-metastatic”) and late (“metastatic”) stage cancer with a p value <0.0001. Further, receiver operating characteristic analysis shows that our biosensing approach is highly specific, with an area under the curve of 1.0. Additionally, our plasmonic nanoantenna-based biosensors are regenerative, allowing multiple measurements using the same biosensors, which is essential in low- and middle-income countries. Taken together, our multiplexing and high-throughput biosensors have the unmatched potential to advance POC diagnostics and meet global needs for early stage detection of cancer and other diseases (e.g., infectious, autoimmune, and neurogenerative diseases)

    Multiplexed and High-Throughput Label-Free Detection of RNA/Spike Protein/IgG/IgM Biomarkers of SARS-CoV-2 Infection Utilizing Nanoplasmonic Biosensors

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or be any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.To tackle the COVID-19 outbreak, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is an unmet need for highly accurate diagnostic tests at all stages of infection with rapid results and high specificity. Here, we present a label-free nanoplasmonic biosensor-based, multiplex screening test for COVID-19 that can quantitatively detect 10 different biomarkers (6 viral nucleic acid genes, 2 spike protein subunits, and 2 antibodies) with a limit of detection in the aM range, all within one biosensor platform. Our newly developed nanoplasmonic biosensors demonstrate high specificity, which is of the upmost importance to avoid false responses. As a proof of concept, we show that our detection approach has the potential to quantify both IgG and IgM antibodies directly from COVID-19-positive patient plasma samples in a single instrument run, demonstrating the high-throughput capability of our detection approach. Most importantly, our assay provides receiving operating characteristics, areas under the curve of 0.997 and 0.999 for IgG and IgM, respectively. The calculated p-value determined through the Mann-Whitney nonparametric test is 96% (77/80), a positive predictive value of 98% at 5% prevalence, and a negative predictive value of 100% at 5% prevalence. We believe that our very sensitive, multiplex, high-throughput testing approach has potential applications in COVID-19 diagnostics, particularly in determining virus progression and infection severity for clinicians for an appropriate treatment, and will also prove to be a very effective diagnostic test when applied to diseases beyond the COVID-19 pandemic

    Développement de réseaux multiplexés de biocapteurs électrochimiques

    No full text
    Ce travail de thèse a porté sur le développement de réseaux de micro- et nanocapteurs opto-électrochimiques pour la bioanalyse. Ils répondent à la demande grandissante dans le domaine de la recherche et du diagnostic pour des outils permettant de réaliser de multiples analyses simultanément avec des échantillons de faibles volumes. Ces nouvelles biopuces de haute densité sont fabriquées à partir de faisceaux cohérents de fibres optiques. Une des deux faces est micro- ou nanostructurée par une attaque chimique, puis fonctionnalisée avec une sonde biologique. La première biopuce est un réseau de nanocapteurs fluorescents à ADN où les sondes ont été immobilisées grâce aux propriétés d’électropolymérisation du pyrrole. La lecture est réalisée à distance au travers du faisceau d’imagerie. En combinant la technique d’immobilisation avec des microleviers électrochimiques, plusieurs sondes différentes ont pu être adressées sur le même réseau nanostructuré. La seconde biopuce permet d’effectuer des immunodosages multiplexés en utilisant l’imagerie électrochimiluminescente résolue à l’échelle d’une microsphère. Le développement de cette technique permet de combiner les avantages de l’électrochimiluminescence avec des immunodosages multiplexés. L’élaboration de ces réseaux allie différentes techniques physico-chimiques, notamment électrochimiques, pour obtenir des biopuces avec un fort potentiel, grâce à une densité et un degré de multiplexage importants.This work presents the development of optoelectrochemical micro- and nanosensor arrays for bioanalytical applications. These platforms respond to the growing need in research and diagnostic for tools allowing multiple and simultaneous analysis in small-volume samples. These new high density biochips are made from coherent optical fiber bundles: one face is micro- or nanostructured by chemical etching and then functionnalized with biological probes. The first biochip is a fluorescent DNA nanosensor array where probes have been immobilized by electrodeposition of a polypyrrole thin film. The detection of the hybridization is remotely performed through the imaging fiber. Different probes were succesfully addressed onto the same nanostructured array thanks to electrochemical cantilevers. The second biochip allows multiplexed sandwich immunoassays using electrochimiluminescent imaging resolved at the single bead level. In particular, the development of this new readout mechanism allows extending electrochemiluminescent detection for multiplexed immunoassays. Design and implementations of both platforms take advantages of different physical and chemical techniques, especially electrochemical, to obtain biochips with a great potential through high density and high multiplexing level

    Développement de réseaux multiplexés de biocapteurs électrochimiques

    No full text
    Ce travail de thèse a porté sur le développement de réseaux de micro- et nanocapteurs opto-électrochimiques pour la bioanalyse. Ils répondent à la demande grandissante dans le domaine de la recherche et du diagnostic pour des outils permettant de réaliser de multiples analyses simultanément avec des échantillons de faibles volumes. Ces nouvelles biopuces de haute densité sont fabriquées à partir de faisceaux cohérents de fibres optiques. Une des deux faces est micro- ou nanostructurée par une attaque chimique, puis fonctionnalisée avec une sonde biologique. La première biopuce est un réseau de nanocapteurs fluorescents à ADN où les sondes ont été immobilisées grâce aux propriétés d’électropolymérisation du pyrrole. La lecture est réalisée à distance au travers du faisceau d’imagerie. En combinant la technique d’immobilisation avec des microleviers électrochimiques, plusieurs sondes différentes ont pu être adressées sur le même réseau nanostructuré. La seconde biopuce permet d’effectuer des immunodosages multiplexés en utilisant l’imagerie électrochimiluminescente résolue à l’échelle d’une microsphère. Le développement de cette technique permet de combiner les avantages de l’électrochimiluminescence avec des immunodosages multiplexés. L’élaboration de ces réseaux allie différentes techniques physico-chimiques, notamment électrochimiques, pour obtenir des biopuces avec un fort potentiel, grâce à une densité et un degré de multiplexage importants.This work presents the development of optoelectrochemical micro- and nanosensor arrays for bioanalytical applications. These platforms respond to the growing need in research and diagnostic for tools allowing multiple and simultaneous analysis in small-volume samples. These new high density biochips are made from coherent optical fiber bundles: one face is micro- or nanostructured by chemical etching and then functionnalized with biological probes. The first biochip is a fluorescent DNA nanosensor array where probes have been immobilized by electrodeposition of a polypyrrole thin film. The detection of the hybridization is remotely performed through the imaging fiber. Different probes were succesfully addressed onto the same nanostructured array thanks to electrochemical cantilevers. The second biochip allows multiplexed sandwich immunoassays using electrochimiluminescent imaging resolved at the single bead level. In particular, the development of this new readout mechanism allows extending electrochemiluminescent detection for multiplexed immunoassays. Design and implementations of both platforms take advantages of different physical and chemical techniques, especially electrochemical, to obtain biochips with a great potential through high density and high multiplexing level

    Développement de réseaux multiplexés de biocapteurs électrochimiques

    No full text
    Ce travail de thèse a porté sur le développement de réseaux de micro- et nanocapteurs opto-électrochimiques pour la bioanalyse. Ils répondent à la demande grandissante dans le domaine de la recherche et du diagnostic pour des outils permettant de réaliser de multiples analyses simultanément avec des échantillons de faibles volumes. Ces nouvelles biopuces de haute densité sont fabriquées à partir de faisceaux cohérents de fibres optiques. Une des deux faces est micro- ou nanostructurée par une attaque chimique, puis fonctionnalisée avec une sonde biologique. La première biopuce est un réseau de nanocapteurs fluorescents à ADN où les sondes ont été immobilisées grâce aux propriétés d électropolymérisation du pyrrole. La lecture est réalisée à distance au travers du faisceau d imagerie. En combinant la technique d immobilisation avec des microleviers électrochimiques, plusieurs sondes différentes ont pu être adressées sur le même réseau nanostructuré. La seconde biopuce permet d effectuer des immunodosages multiplexés en utilisant l imagerie électrochimiluminescente résolue à l échelle d une microsphère. Le développement de cette technique permet de combiner les avantages de l électrochimiluminescence avec des immunodosages multiplexés. L élaboration de ces réseaux allie différentes techniques physico-chimiques, notamment électrochimiques, pour obtenir des biopuces avec un fort potentiel, grâce à une densité et un degré de multiplexage importants.This work presents the development of optoelectrochemical micro- and nanosensor arrays for bioanalytical applications. These platforms respond to the growing need in research and diagnostic for tools allowing multiple and simultaneous analysis in small-volume samples. These new high density biochips are made from coherent optical fiber bundles: one face is micro- or nanostructured by chemical etching and then functionnalized with biological probes. The first biochip is a fluorescent DNA nanosensor array where probes have been immobilized by electrodeposition of a polypyrrole thin film. The detection of the hybridization is remotely performed through the imaging fiber. Different probes were succesfully addressed onto the same nanostructured array thanks to electrochemical cantilevers. The second biochip allows multiplexed sandwich immunoassays using electrochimiluminescent imaging resolved at the single bead level. In particular, the development of this new readout mechanism allows extending electrochemiluminescent detection for multiplexed immunoassays. Design and implementations of both platforms take advantages of different physical and chemical techniques, especially electrochemical, to obtain biochips with a great potential through high density and high multiplexing level.BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF
    corecore