59 research outputs found

    The epigenetic regulator RINF (CXXC5) maintains SMAD7 expression in human immature erythroid cells and sustains red blood cells expansion

    Full text link
    The gene CXXC5, encoding a Retinoid-Inducible Nuclear Factor (RINF), is located within a region at 5q31.2 commonly deleted in myelodysplastic syndrome (MDS) and adult acute myeloid leukemia (AML). RINF may act as an epigenetic regulator and has been proposed as a tumor suppressor in hematopoietic malignancies. However, functional studies in normal hematopoiesis are lacking, and its mechanism of action is unknow. Here, we evaluated the consequences of RINF silencing on cytokineinduced erythroid differentiation of human primary CD34+ progenitors. We found that RINF is expressed in immature erythroid cells and that RINF-knockdown accelerated erythropoietin-driven maturation, leading to a significant reduction (~45%) in the number of red blood cells (RBCs), without affecting cell viability. The phenotype induced by RINF-silencing was TGFβ-dependent and mediated by SMAD7, a TGFβ- signaling inhibitor. RINF upregulates SMAD7 expression by direct binding to its promoter and we found a close correlation between RINF and SMAD7 mRNA levels both in CD34+ cells isolated from bone marrow of healthy donors and MDS patients with del(5q). Importantly, RINF knockdown attenuated SMAD7 expression in primary cells and ectopic SMAD7 expression was sufficient to prevent the RINF knockdowndependent erythroid phenotype. Finally, RINF silencing affects 5’-hydroxymethylation of human erythroblasts, in agreement with its recently described role as a Tet2- anchoring platform in mouse. Altogether, our data bring insight into how the epigenetic factor RINF, as a transcriptional regulator of SMAD7, may fine-tune cell sensitivity to TGFβ superfamily cytokines and thus play an important role in both normal and pathological erythropoiesis

    Grass strategies and grassland community responses to environmental drivers: a review

    Full text link

    Transferrin Receptors in Erythropoiesis

    No full text
    Erythropoiesis is a highly dynamic process giving rise to red blood cells from hematopoietic stem cells present in the bone marrow. Red blood cells transport oxygen to tissues thanks to the hemoglobin comprised of α- and β-globin chains and of iron-containing hemes. Erythropoiesis is the most iron-consuming process to support hemoglobin production. Iron delivery is mediated via transferrin internalization by the endocytosis of transferrin receptor type 1 (TFR1), one of the most abundant membrane proteins of erythroblasts. A second transferrin receptor—TFR2—associates with the erythropoietin receptor and has been implicated in the regulation of erythropoiesis. In erythroblasts, both transferrin receptors adopt peculiarities such as an erythroid-specific regulation of TFR1 and a trafficking pathway reliant on TFR2 for iron. This review reports both trafficking and signaling functions of these receptors and reassesses the debated role of TFR2 in erythropoiesis in the light of recent findings. Potential therapeutic uses targeting the transferrin-TFR1 axis or TFR2 in hematological disorders are also discussed

    Rôle de la b-TrCPdans la mise au repos du signal transmis par l'érythropoïétine

    No full text
    PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF

    Host Cell Remodeling by Plasmodium falciparum Sexual Stages

    No full text
    International audienc

    Erythropoiesis and Malaria, a Multifaceted Interplay

    No full text
    International audienceOne of the major pathophysiologies of malaria is the development of anemia. Although hemolysis and splenic clearance are well described as causes of malarial anemia, abnormal erythropoiesis has been observed in malaria patients and may contribute significantly to anemia. The interaction between inadequate erythropoiesis and Plasmodium parasite infection, which partly occurs in the bone marrow, has been poorly investigated to date. However, recent findings may provide new insights. This review outlines clinical and experimental studies describing different aspects of ineffective erythropoiesis and dyserythropoiesis observed in malaria patients and in animal or in vitro models. We also highlight the various human and parasite factors leading to erythropoiesis disorders and discuss the impact that Plasmodium parasites may have on the suppression of erythropoiesis

    Ingénierie des projets de territoire et conduite d’opérations d’habitat dans une région urbaine à forte valeur patrimoniale, le Val de Loire

    No full text

    Pathophysiological mechanisms of autoimmunity

    No full text
    International audienceAutoimmune diseases (AIDs) are chronic disorders characterized by inflammatory reactions against self‐antigens that can be either systemic or organ specific. AIDs can differ in their epidemiologic features and clinical presentations, yet all share a remarkable complexity. AIDs result from an interplay of genetic and epigenetic factors with environmental components that are associated with imbalances in the immune system. Many of the pathogenic mechanisms of AIDs are also implicated in myasthenia gravis (MG), an AID in which inflammation of the thymus leads to a neuromuscular disorder. Our goal here is to highlight the similarities and differences between MG and other AIDs by reviewing the common transcriptome signatures and the development of germinal centers and by discussing some unresolved questions about autoimmune mechanisms. This review will propose hypotheses to explain the origin of regulatory T (Treg) cell defects and the causes of chronicity and specificity of AIDs
    corecore