27 research outputs found
Science Arts & Métiers (SAM)
International audienceAugmented Reality (AR) technology facilitates interactions with information and understanding of complex situations. Aeronautical Maintenance combines complexity induced by the variety of products and constraints associated to aeronautic sector and the environment of maintenance. AR tools seem well indicated to solve constraints of productivity and quality on the aeronautical maintenance activities by simplifying data interactions for the workers. However, few evaluations of AR have been done in real processes due to the difficulty of integrating the technology without proper tools for deployment and assessing the results. This paper proposes a method to select suitable criteria for AR evaluation in industrial environment and to deploy AR solutions suited to assist maintenance workers. These are used to set up on-field experiments that demonstrate benefits of AR on process and user point of view for different profiles of workers. Further work will consist on using these elements to extend results to AR evaluation on the whole aeronautical maintenance process. A classification of maintenance activities linked to workers specific needs will lead to prediction of the value that augmented reality would bring to each activity
Habitability on Mars from a Microbial Point of View
International audienceExtraterrestrial habitability is a complex notion. We briefly review what is known about the origin of life on Earth, that is, life based on carbon chemistry and water. We then discuss habitable conditions (past and present) for established life and for the survival of microorganisms. Based on these elements, we propose to use the term habitable only for conditions necessary for the origin of life, the proliferation of life, and the survival of life. Not covered by this term would be conditions necessary for prebiotic chemistry and conditions that would allow the recognition of extinct or hibernating life. Finally, we apply this concept to the potential emergence of life on Mars where suitable conditions for life to start, proliferate, and survive have been heterogeneous throughout its history. These considerations have a profound impact on the nature and distribution of eventual traces of martian life, or any precursor, and must therefore inform our search-for-life strategies. Key Words: Mars-- Microbial life--Punctuated habitabilit
Methodology for the Field Evaluation of the Impact of Augmented Reality Tools for Maintenance Workers in the Aeronautic Industry
Augmented Reality (AR) enhances the comprehension of complex situations by making the handling of contextual information easier. Maintenance activities in aeronautics consist of complex tasks carried out on various high-technology products under severe constraints from the sector and work environment. AR tools appear to be a potential solution to improve interactions between workers and technical data to increase the productivity and the quality of aeronautical maintenance activities. However, assessments of the actual impact of AR on industrial processes are limited due to a lack of methods and tools to assist in the integration and evaluation of AR tools in the field. This paper presents a method for deploying AR tools adapted to maintenance workers and for selecting relevant evaluation criteria of the impact in an industrial context. This method is applied to design an AR tool for the maintenance workshop, to experiment on real use cases, and to observe the impact of AR on productivity and user satisfaction for all worker profiles. Further work aims to generalize the results to the whole maintenance process in the aeronautical industry. The use of the collected data should enable the prediction of the impact of AR for related maintenance activities
The high-resolution map of Oxia Planum, Mars; the landing site of the ExoMars Rosalind Franklin rover mission
This 1:30,000 scale geological map describes Oxia Planum, Mars, the landing site for the ExoMars Rosalind Franklin rover mission. The map represents our current understanding of bedrock units and their relationships prior to Rosalind Franklin’s exploration of this location. The map details 15 bedrock units organised into 6 groups and 7 textural and surficial units. The bedrock units were identified using visible and near-infrared remote sensing datasets. The objectives of this map are (i) to identify where the most astrobiologically relevant rocks are likely to be found, (ii) to show where hypotheses about their geological context (within Oxia Planum and in the wider geological history of Mars) can be tested, (iii) to inform both the long-term (hundreds of metres to ∼1 km) and the short-term (tens of metres) activity planning for rover exploration, and (iv) to allow the samples analysed by the rover to be interpreted within their regional geological context
The high-resolution map of Oxia Planum, Mars; the landing site of the ExoMars Rosalind Franklin rover mission
This 1:30,000 scale geological map describes Oxia Planum, Mars, the landing site for the ExoMars Rosalind Franklin rover mission. The map represents our current understanding of bedrock units and their relationships prior to Rosalind Franklin’s exploration of this location. The map details 15 bedrock units organised into 6 groups and 7 textural and surficial units. The bedrock units were identified using visible and near-infrared remote sensing datasets. The objectives of this map are (i) to identify where the most astrobiologically relevant rocks are likely to be found, (ii) to show where hypotheses about their geological context (within Oxia Planum and in the wider geological history of Mars) can be tested, (iii) to inform both the long-term (hundreds of metres to ∼1 km) and the short-term (tens of metres) activity planning for rover exploration, and (iv) to allow the samples analysed by the rover to be interpreted within their regional geological context.The ExoMars Rosalind Franklin Mission is a partnership between ESA and NASA. The Rosalind Franklin Rover has eight instruments in its ‘Pasteur’ Payload, with Principal Investigators from seven countries all of whom we would like to thank for there support of this project. We would like to acknowledge the following funding bodies, people and institutions supporting the lead authors of this work. We thank the UK Space Agency (UK SA) for funding P. Fawdon, on grants; ST/W002736/1, ST/L00643X/1 and ST/R001413/1, MRB on grants; ST/T002913/1, ST/V001965/1, ST/R001383/1, ST/R001413/1, P. Grindrod on grants; ST/L006456/1, ST/R002355/1, ST/V002678/1 and J. Davis on grants ST/K502388/1, ST/R002355/1, ST/V002678/1 through the ongoing Aurora space exploration programme. C. Orgel was supported by the ESA Research Fellowship Program. Alessandro Frigeri: was funded by the Italian Space Agency (ASI) grant ASI-INAF number 2017-412-H.0 (ExoMars/Ma_MISS) and D. Loizeau was funded by the H2020-COMPET-2015 programme (grant 687302), C. Quantin-Nataf was supported by the French space agency CNES, I. Torres was supported by an ESA Young Graduate Traineeship, A. Nass was supported by Helmholtz Metadata Projects (#ZT-I-PF-3-008). We thank NASA and the HiRISE camera team for data collection support throughout the ExoMars landing site selection and charectorisation process. The USGS for the HiRISE DTM data and maintaining the ISIS and SOCET SET DEM workflows. The authors wish to thank the CaSSIS spacecraft and instrument engineering teams. CaSSIS is a project of the University of Bern and funded through the Swiss Space Office via ESA's PRODEX programme. The instrument hardware development was also supported by the Italian Space Agency (ASI) (ASI-INAF agreement no. I/2020-17-HH.0), INAF/Astronomical Observatory of Padova, and the Space Research Center (CBK) in Warsaw. Support from SGF (Budapest), the University of Arizona (Lunar and Planetary Lab.) and NASA are also gratefully acknowledged. Operations support from the UK Space Agency under grant ST/R003025/1 is also acknowledged. This research has made use of the USGS Integrated Software for Imagers and Spectrometers (ISIS) Technical support for setup of the Multi-Mission Geographic Information System for concurrent team mapping was provided by F. Calef (III) and T. Soliman at NASA JPL and S. de Witte at ESA-ESTEC.This work was supported by Agencia Estatal de Investigación [grant number ID2019-107442RB-C32, MDM-2017-0737]; Agenzia Spaziale Italiana [grant number 2017-412-H.0]; Bundesministerium für Wirtschaft und Technologie [grant number 50 QX 2002]; Centre National de la Recherche Scientifique; Centre National d’Etudes Spatiales; Euskal Herriko Unibertsitatea [grant number PES21/88]; Istituto Nazionale di Astrofisica [grant number I/ 060/10/0]; Ministerio de Economía y Competitividad [grant number PID2019-104205GB-C21]; Ministry of Science and Higher Education of the Russian Federation [grant number AAAA-A18-118012290370-6]; National Aeronautics and Space Administration [grant number NNX15AH46G]; Norges Forskningsråd [grant number 223272]; European Union's Horizon 2020 (H2020-COMPET-2015) [grant number 687302 (PTAL)]; Sofja Kovalevskaja Award of the Alexander von Humboldt Foundation; MINECO [grant number PID2019-107442RB-C32]; The Open University [grant number Space Strategic Research Area]; European Union's Horizon 2020 research and innovation programme [grant number 776276]; H2020-COMPET-2015 [grant number 687302]; The Research Council of Norway, Centres of Excellence funding scheme [grant number 223272]; Helmholtz Metadata Projects [grant number ZT-I-PF-3-008]; The Research Council of Norway [grant number 223272]; Swiss Space Office via ESA's PRODEX programme; Ines Torres was supported by an ESA Young Graduate Traineeship; Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung [grant number 200021_197293]; Science and Technology Facilities Council [grant number 1967420]; UK Space Agency [grant number ST/K502388/1, ST/R002355/1, ST/V002678/1]. The ExoMars Rosalind Franklin Mission is a partnership between ESA and NASA. The Rosalind Franklin Rover has eight instruments in its ‘Pasteur’ Payload, with Principal Investigators from seven countries all of whom we would like to thank for there support of this project. We would like to acknowledge the following funding bodies, people and institutions supporting the lead authors of this work. We thank the UK Space Agency (UK SA) for funding P. Fawdon, on grants; ST/W002736/1, ST/L00643X/1 and ST/R001413/1, MRB on grants; ST/T002913/1, ST/V001965/1, ST/R001383/1, ST/R001413/1, P. Grindrod on grants; ST/L006456/1, ST/R002355/1, ST/V002678/1 and J. Davis on grants ST/K502388/1, ST/R002355/1, ST/V002678/1 through the ongoing Aurora space exploration programme. C. Orgel was supported by the ESA Research Fellowship Program. Alessandro Frigeri: was funded by the Italian Space Agency (ASI) grant ASI-INAF number 2017-412-H.0 (ExoMars/Ma_MISS) and D. Loizeau was funded by the H2020-COMPET-2015 programme (grant 687302), C. Quantin-Nataf was supported by the French space agency CNES, I. Torres was supported by an ESA Young Graduate Traineeship, A. Nass was supported by Helmholtz Metadata Projects (#ZT-I-PF-3-008). We thank NASA and the HiRISE camera team for data collection support throughout the ExoMars landing site selection and charectorisation process. The USGS for the HiRISE DTM data and maintaining the ISIS and SOCET SET DEM workflows. The authors wish to thank the CaSSIS spacecraft and instrument engineering teams. CaSSIS is a project of the University of Bern and funded through the Swiss Space Office via ESA's PRODEX programme. The instrument hardware development was also supported by the Italian Space Agency (ASI) (ASI-INAF agreement no. I/2020-17-HH.0), INAF/Astronomical Observatory of Padova, and the Space Research Center (CBK) in Warsaw. Support from SGF (Budapest), the University of Arizona (Lunar and Planetary Lab.) and NASA are also gratefully acknowledged. Operations support from the UK Space Agency under grant ST/R003025/1 is also acknowledged. This research has made use of the USGS Integrated Software for Imagers and Spectrometers (ISIS) Technical support for setup of the Multi-Mission Geographic Information System for concurrent team mapping was provided by F. Calef (III) and T. Soliman at NASA JPL and S. de Witte at ESA-ESTEC.Peer reviewe
Commande d'un micro-moteur piézoélectrique
L'objectif de ce projet est de développer une commande de l'alimentation d'un tel moteur affin de pouvoir suivre les variations de cette fréquence de résonance à l'aide d'un circuit appelé "boucle à verrouillage de phase". Les buts de ce projet sont : -La compréhension du fonctionnement d'une boucle à verrouillage de phase -Le choix d'un cahier des charges fixant les caractéristiques du moteur -Le dimensionnement et le choix des composants de cette boucle à verrouillage de phase -La validation du concept de base à l'aide d'une simulation sur Simulink -Le développement et la simulation d'un circuit de commande -La réalisation et le test du circuit de commande développ
Evolution dans la prise en charge des patients présentant un syndrome de Brugada et devenir des patients implantés (suivi de la cohorte bordelaise)
INTRODUCTION : En 2006, une étude a décrit le devenir des patients présentant un syndrome de Brugada et porteurs d'un défibrillateur automatique implantable. Nous avons voulu savoir si cette publication a influencé la prise en charge de ces patients. MATERIEL ET METHODE : Tous les patients (n = 254, 193 hommes, 45 +- 12 ans) présentant un aspect électrocardiographique de Brugada de type 1, suivis dans notre centre entre 1996 et 2011, ont été inclus. Deux groupes ont été identifiés selon la période de diagnostic (groupe 1 : 1996 à 2005 ; groupe 2 : 2006 à 2011, n = 145). Cinq patients ont été perdus de vue. RESULTATS : Il n'a pas été retrouvé de différence significative concernant les caractéristiques des 2 groupes, mise à part la durée moyenne de suivi. Le taux moyen d'implantation dans le groupe 2 est nettement plus faible que dans le groupe 1 (29 % contre 43 %, p = 2,2.10 puis -3), dûe à une moindre implantation des patients asymptomatiques (14 % contre 40 %, p < 10 puis -4). La survenue annuelle de chocs appropriés, inappropriés ou de décès n'était pas différente d'un groupe à l'autre principalement liée à un faible taux d'événements appropriés ou de décès. Le taux de chocs appropriés est faible chez les patients asymptomatiques (0,5 % par an) ou avec antécédent de syncope (1 % par an). Le taux de complications est élevé, en particulier celui des dysfonctions de sonde (24 % des patients à 7 ans). CONCLUSION : Depuis 2006, le taux d'implantation de défibrillateur a nettement diminué dans notre centre chez les patients atteints de syndrome de Brugada, principalement chez les asymptomatiques. Le suivi à plus long terme confirme un taux important de complications liées au défibrillateur.BORDEAUX2-BU Santé (330632101) / SudocSudocFranceF
Quantitative Comparison of Piezoresistive Sensitivity for Various Biosensor Design
Piezoresistive cantilevers have been extensively used for many years as force sensors, mass detectors, image scanning tools, and as biosensors, which have absorbate layers generating surface stress upon reaction with analyte. We will introduce different piezoresistive biosensor designs, e.g., single clamped cantilever and membrane-type sensor. The different sensor structures are compared with respect to DR/R value of a single piezoresistor embedded on the device structures with different arrangements. The quantitative DR/R values of each sensor were calculated with a simulation tool based on finite element analysis, to be introduced as another contribution to this conference. Based on the results, we will present an optimized single clamped cantilever with one piezoresistor and an optimized biosensor structure, which is not a simple “cantilever” rather it consists of an “absorbate membrane” suspended by four “sensing beams”