30,623 research outputs found

    Nu sub 1 plus nu sub 3 combination band of SO2

    Get PDF
    The infrared-active vibration-rotation combination band nu sub 1 + nu sub 3 of sulfur dioxide was measured with moderately high spectral resolution. Quantum number identifications of spectral lines were made by comparison with theoretically computed spectra which include the effects of centrifugal distortion. Relative line intensities were also calculated. The band center for nu sub 1 + nu sub 3 was determined to be 2499.60 + or - 0.10/cm

    Longitudinal multivariate tensor- and searchlight-based morphometry using permutation testing

    Get PDF
    Tensor based morphometry [1] was used to detect statistically significant regions of neuroanatomical change over time in a comparison between 36 probable Alzheimer's Disease patients and 20 age- and sexmatched controls. Baseline and twelve-month repeat Magnetic Resonance images underwent tied spatial normalisation [10] and longitudinal high-dimensional warps were then estimated. Analyses involved univariate and multivariate data derived from the longitudinal deformation fields. The most prominent findings were expansion of the fluid spaces, and contraction of the hippocampus and temporal region. Multivariate measures were notably more powerful, and have the potential to identify patterns of morphometric difference that would be overlooked by conventional mass-univariate analysis

    Fundamental bands of S(32)O2(16)

    Get PDF
    The infrared-active vibration-rotation fundamentals of sulfur dioxide were measured with moderately high spectral resolution. Quantum number assignments were made for spectral lines from J = O to 57, by comparison with theoretically computed spectra which include the effects of centrifugal distortion. The following values for the band centers were determined: nu sub 1 = 1151.65 + or - 0.10/cm, nu sub 2 = 517.75 + or - 0.10/cm, and nu sub 3 = 1362.00 + or - 0.10/cm. Intensities of the observed lines have also been computed. Dipole moment derivatives were obtained

    High-resolution absorption spectroscopy of the circumgalactic medium of the Milky Way

    Full text link
    In this article we discuss the importance of high-resolution absorption spectroscopy for our understanding of the distribution and physical nature of the gaseous circumgalactic medium (CGM) that surrounds the Milky Way. Observational and theoretical studies indicate a high complexity of the gas kinematics and an extreme multi-phase nature of the CGM in low-redshift galaxies. High-precision absorption-line measurements of the Milky Way's gas environment thus are essential to explore fundamental parameters of circumgalactic gas in the local Universe, such as mass, chemical composition, and spatial distribution. We shortly review important characteristics of the Milky Way's CGM and discuss recent results from our multi-wavelength observations of the Magellanic Stream. Finally, we discuss the potential of studying the warm-hot phase of the Milky Way's CGM by searching for extremely weak [FeX] l6374.5 and [FeIVX] l5302.9 absorption in optical QSO spectra.Comment: 7 pages, 4 figures; accepted for publication in Astronomical Notes (paper version of a talk presented at the 10th Thinkshop, Potsdam, 2013

    Inventory control: Cytochrome c oxidase assembly regulates mitochondrial translation.

    Get PDF
    corecore