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Abstract
Tensor based morphometry [1] was used to detect 
statistically significant regions of neuroanatomical 
change over time in a comparison between 36 probable 
Alzheimer's Disease patients and 20 age- and sex-
matched controls. Baseline and twelve-month repeat 
Magnetic Resonance images underwent tied spatial 
normalisation [10] and longitudinal high-dimensional 
warps were then estimated. Analyses involved univariate 
and multivariate data derived from the longitudinal 
deformation fields. The most prominent findings were 
expansion of the fluid spaces, and contraction of the 
hippocampus and temporal region. Multivariate measures 
were notably more powerful, and have the potential to 
identify patterns of morphometric difference that would 
be overlooked by conventional mass-univariate analysis.

Tensor-Based Morphometry
Two-stage inter- and intra-subject registration provided 
deformation fields between the serial images in an 
average atlas space (approximating the procedure of [9]). 
At each voxel, the three components of this displacement 
can be analysed directly [6]; more commonly, the spatial 
gradient of the transformation is taken (the 3x3 Jacobian 
matrix) and its univariate determinant is analysed. The 
measures are spatially smoothed with an 8mm full-width 
at half-maximum Gaussian. Here we compare these 
standard approaches to other multivariate measurements 
derived from J. The singular value decomposition 
J=USV' gives the polar decomposition J=(UV')(VSV') 
=(R)(T), with rotation R and T=sqrtm(J'J) encoding 
shape. Several strain tensors derived from T are known in 
solid-mechanics, including the Hencky Tensor H= 
logm(T)=logm(J'J)/2 [1]. H can also be motivated by a 
desire to perform Log-Euclidean analysis of a positive 
definite symmetric tensor derived from J [8].

Searchlight Morphometry
Spatial smoothing combines noisy voxel-wise data to 
increase the chance of detecting smooth signals. An 
alternative approach [7] is to collect neighbouring 
unsmoothed measurements into a multivariate summary, 
for example within a spherical (“searchlight”) kernel 
around each voxel. Multivariate statistics on these data 
can potentially detect signals with more complex spatial 
patterns of information.

Statistical Analysis
The two-sample Cramér test [2] is based on Euclidean 
distances between multivariate observations and does not 
require sufficient observations to estimate the covariance 
matrix. We determine p-values corrected for Family Wise 
Error using a new multivariate version of the step-down 
methodology of [3], with 5000 unique random 
permutations, thresholding at pFWE<0.05.
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[2] Baringhaus & Franz (2004) J Multivar Anal 88:190-206  [3] Belmonte & Yurgelun-Todd (2001) 
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76  [10] Ridgway et al (2007) OHBM13  [11] Schwartzman et al (2005) MRM 53:1423-31
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The 6-element H promotes 
many voxels to pFDR<0.05, 
while almost no voxels are 
found exclusively with the 
scalar determinant. Though 
visually less spectacular, 
FWE correction still shows 
advantages for multivariate 
data. In figure  5 we include 
also the full Jacobian matrix 
(not considered in [6,8], 
possibly because its high 
dimensionality can be  
problematic with a standard 
statistic). More voxels meet 
FWE significance with the 
full Jacobian than with H.

Results
Figure 1 shows statistics, and figure 2, images of 
significance (FWE p-values, on a logarithmic scale from 
p=0.05-0.0005), for six different measurements (their 
dimensionalities and corresponding number of unique 
covariance matrix elements are shown below the names). 
To the right are cross-sectional views and a 3D rendering 
of the significant voxels from log-Euclidean analysis of 
the smoothed strain tensor, colour-coded by the sign of 
the two group mean of trace(smoothed(H)), which 
without smoothing, would be equal to the conventional 
log Jacobian determinant. Findings include ventricular

Figure 7 explores the complementarity of 
different measures, as in [6], the 
divergence and curl of the vector 
displacement field are considered 
alongside its 3 components. There is 
evidence that different measures might 
be best used in combination.

In order to more accurately quantify the differences in 
power, we plot curves of the cumulative distribution of the 
uncorrected voxel-wise p-values [8] (with a log-scale on 
the x-axis to focus on the most significant p-values). The 
displacement field components are found to outperform the 
standard log Jacobian determinant, but other multivariate 
measurements offer more dramatic improvements. The 
Geodesic Anisotropy [8] was found to be the best of several 
“orientational” measures (not shown) including curl(disp) 
and the major eigenvector of the strain tensor (which we 
analysed with novel permutation testing of the Watson 
statistic [11]). The complete Jacobian is the most powerful.
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[6] shows div(disp) approximates det(J), 
and they chose it in preference due to its 
statistical independence from the actual

displacement field components. However, we found this 
approximation to have inferior power to log(det(J)).
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The figures above compare smoothed log(det(J)) to results 
from searchlight analyses of unsmoothed data, in spherical 
kernels with a range of squared radii (in voxels, number of 
voxels in kernel shown in parentheses). Interestingly, the 
uncorrected results appear to show a slightly better trade-
off between sensitivity and localisation than for Gaussian 
smoothing. This carries over to FDR adjusted p-values 
(used in [7]), as they are monotonically related to pUnc. 
However, FWE corrected results (9) actually favour the 
standard analysis. Considering cumulative distributions of 
uncorrected and FWE p-values, the results are similar: 
without correction, a 57-voxel searchlight roughly matches 
the power of smoothing; with correction, 123 or 147 voxels 
are required, but such kernels have inadequate resolution. 
This trend for increasingly multivariate measurements to be 
relatively more penalised by FWE correction is also 
apparent in the multivariate TBM analyses; the corrected 
version of figure 5 (not shown) is much less clear-cut.
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Figure 12 attempts to increase 
the spatial range of searchlight 
analysis without unduly large 
numbers of voxels, by using 
spline-pyramid resampling [4] 
but results are  not improved. 
Multivariate analyses have 
been shown to have potential 
benefits, but further work is 
required to understand and 
overcome certain drawbacks. 
It is likely that more precise 
spatial normalisation [5] will 
improve both Tensor and 
Searchlight Morphometry.
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expansion, reduced temporal lobe gray matter, and some 
white matter differences. Quite similar patterns were found 
with most of the alternative statistics, but to differing 
extents. We explore these differences in greater detail 
below. First, we note that if more lenient False Discovery 
Rate correction is used in place of FWE (as in [8]), we find 
the differences appear more dramatic. Figure 4 below 
compares the smoothed log determinant with the smoothed 
log-Euclidean strain tensor elements, showing regions 
where either or both statistics were significant.
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