31,038 research outputs found
Clustering and Micro-immiscibility in Alcohol-Water Mixtures: Evidence from Molecular Dynamics Simulations
We have investigated the hydrogen-bonded structures in liquid methanol and a
7:3 mole fraction aqueous solution using classical Molecular Dynamics
simulations at 298K and ambient pressure. We find that, in contrast to recent
predictions from X-ray emission studies, the hydrogen-bonded structure in
liquid methanol is dominated by chain and small ring structures. In the
methanol-rich solution, we find evidence of micro-immiscibility, supporting
recent conclusions derived from neutron diffraction data.Comment: 5 pages, 4 figure
Subsonic longitudinal aerodynamic characteristics and engine pressure distributions for an aircraft with an integrated scramjet designed for Mach 6 cruise
A 1/10-scale model of a proposed hypersonic aircraft with an integrated scramjet was tested. The investigation took place over a Mach number range from 0.2 to 0.7 and an angle of attack range from 2 deg to approximately 17 deg at a sideslip angle of 0 deg. The primary configuration variables studied were engine location, internal engine geometry, and external engine geometry. The results are presented without analysis
D-term Dynamical Supersymmetry Breaking Generating Split N=2 Gaugino Masses of Mixed Majorana-Dirac Type
Under a few mild assumptions, N=1 supersymmetry in four dimensions is shown
to be spontaneously broken in a self-consistent Hartree-Fock approximation of
BCS/NJL type to one-loop off-shell, in the gauge theory specified by the gauge
kinetic function and the superpotential of adjoint chiral superfields, in
particular, that possesses N=2 extended supersymmetry spontaneously broken to
N=1 at tree level. The N=2 gauginos receive mixed Majorana-Dirac masses and are
split. We derive an explicit form of the gap equation, showing the existence of
a nontrivial solution.Comment: 4 pages, the paper extended (a numerical plot of the solution to the
gap equation, an estimate of the decay rate of the metastable vacuum, and
discussion on nonvanishing term induced by the D term dynamical
supersymmetry breaking diven), references adde
Amino acids precursors in lunar finds
The consistent pattern is discussed of amino acids found in lunar dust from Apollo missions. The evidence indicates that compounds yielding amino acids were implanted into the surface of the moon by the solar wind, and the kind and amounts of amino acids found on the moon are closely similar to those found in meteorites. It is concluded that there is a common cosmochemical pattern for the moom and meteorites, and this offers evidence of a common course of cosmochemical reactions for carbon
Polynomial Cointegration among Stationary Processes with Long Memory
n this paper we consider polynomial cointegrating relationships among
stationary processes with long range dependence. We express the regression
functions in terms of Hermite polynomials and we consider a form of spectral
regression around frequency zero. For these estimates, we establish consistency
by means of a more general result on continuously averaged estimates of the
spectral density matrix at frequency zeroComment: 25 pages, 7 figures. Submitted in August 200
Contamination in complex healthcare trials:the falls in care homes (FinCH) study experience
BACKGROUND: Trials are at risk of contamination bias which can occur when participants in the control group are inadvertently exposed to the intervention. This is a particular risk in rehabilitation studies where it is easy for trial interventions to be either intentionally or inadvertently adopted in control settings. The Falls in Care Homes (FinCH) trial is used in this paper as an example of a large randomised controlled trial of a complex intervention to explore the potential risks of contamination bias. We outline the FinCH trial design, present the potential risks from contamination bias, and the strategies used in the design of the trial to minimise or mitigate against this. The FinCH trial was a multi-centre randomised controlled trial, with embedded process evaluation, which evaluated whether systematic training in the use of the Guide to Action Tool for Care Homes reduced falls in care home residents. Data were collected from a number of sources to explore contamination in the FinCH trial. Where specific procedures were adopted to reduce risk of, or mitigate against, contamination, this was recorded. Data were collected from study e-mails, meetings with clinicians, research assistant and clinician network communications, and an embedded process evaluation in six intervention care homes. During the FinCH trial, there were six new falls prevention initiatives implemented outside the study which could have contaminated our intervention and findings. Methods used to minimise contamination were: cluster randomisation at the level of care home; engagement with the clinical community to highlight the risks of early adoption; establishing local collaborators in each site familiar with the local context; signing agreements with NHS falls specialists that they would maintain confidentiality regarding details of the intervention; opening additional research sites; and by raising awareness about the importance of contamination in research among participants. CONCLUSION: Complex rehabilitation trials are at risk of contamination bias. The potential for contamination bias in studies can be minimized by strengthening collaboration and dialogue with the clinical community. Researchers should recognise that clinicians may contaminate a study through lack of research expertise
Improved Lagrangian mixing models for passive scalars in isotropic turbulence
Lagrangian data for velocity, scalars, and energy and scalar dissipation from direct numerical simulations are used to validate Lagrangian mixing models for inert passive scalars in stationary isotropic turbulence. The scalar fluctuations are nearly Gaussian, and, as a result of production by uniform mean gradients, statistically stationary. Comparisons are made for Taylor-scale Reynolds numbers in the range 38 to about 240 and Schmidt numbers in the range 1/8 to 1. Model predictions for one-point, one-time Eulerian statistics ~Eulerian correspondence! and one-particle, two-time Lagrangian statistics ~Lagrangian correspondence! are examined. Two scalar mixing models, namely the Lagrangian Fokker–Planck model and the Lagrangian colored-noise ~LCN! model, are proposed and written in terms of stochastic differential equations ~SDE! with specified drift and diffusion terms. Both of these models rely on statistics of the scalar field conditioned upon the energy dissipation, as provided by the Lagrangian spectral relaxation ~LSR! model. With the exception of the scalar dissipation, the models are shown to capture the Reynolds and Schmidt-number dependence of the Lagrangian integral time scales. However, the LCN model provides a more realistic description of the Lagrangian scalar fluctuations as differentiable time series having the correct form of the scalar autocorrelation function. Further extensions of the new mixing models to non-Gaussian scalars are conceptually straightforward, but require a closure for the scalar-conditioned scalar dissipation rate matrix. Likewise, accurate prediction of joint statistics for differential diffusion between different scalars with unequal molecular diffusivities will require the formulation of a multiscale SDE similar to the LSR model
A Positivity Theorem for Gravitational Tension in Brane Spacetimes
We study transverse asymptotically flat spacetimes without horizons that
arise from brane matter sources. We assume that asymptotically there is a
spatial translation Killing vector that is tangent to the brane. Such
spacetimes are characterized by a tension, analogous to the ADM mass, which is
a gravitational charge associated with the asymptotic spatial translation
Killing vector. Using spinor techniques, we prove that the purely gravitational
contribution to the spacetime tension is positive definite.Comment: 8+1 page
- …