49 research outputs found

    Shallow seafloor gas emissions near Heard and McDonald Islands on the Kerguelen Plateau, Southern Indian Ocean

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Spain, E. A., Johnson, S. C., Hutton, B., Whittaker, J. M., Lucieer, V., Watson, S. J., Fox, J. M., Lupton, J., Arculus, R., Bradney, A., & Coffin, M. F. Shallow seafloor gas emissions near Heard and McDonald Islands on the Kerguelen Plateau, Southern Indian Ocean. Earth and Space Science, 7(3), (2020): e2019EA000695, doi:10.1029/2019EA000695.Bubble emission mechanisms from submerged large igneous provinces remains enigmatic. The Kerguelen Plateau, a large igneous province in the southern Indian Ocean, has a long sustained history of active volcanism and glacial/interglacial cycles of sedimentation, both of which may cause seafloor bubble production. We present the results of hydroacoustic flare observations around the underexplored volcanically active Heard Island and McDonald Islands on the Central Kerguelen Plateau. Flares were observed with a split‐beam echosounder and characterized using multifrequency decibel differencing. Deep‐tow camera footage, water properties, water column ÎŽ3He, subbottom profile, and sediment ÎŽ13C and ÎŽ34S data were analyzed to consider flare mechanisms. Excess ÎŽ3He near McDonald Islands seeps, indicating mantle‐derived input, suggests proximal hydrothermal activity; McDonald Islands flares may thus indicate CO2, methane, and other minor gas bubbles associated with shallow diffuse hydrothermal venting. The Heard Island seep environment, with subbottom acoustic blanking in thick sediment, muted 3He signal, and ÎŽ13C and ÎŽ34S fractionation factors, suggest that Heard Island seeps may either be methane gas (possibly both shallow biogenic methane and deeper‐sourced thermogenic methane related to geothermal heat from onshore volcanism) or a combination of methane and CO2, such as seen in sediment‐hosted geothermal systems. These data provide the first evidence of submarine gas escape on the Central Kerguelen Plateau and expand our understanding of seafloor processes and carbon cycling in the data‐poor southern Indian Ocean. Extensive sedimentation of the Kerguelen Plateau and additional zones of submarine volcanic activity mean additional seeps or vents may lie outside the small survey area proximal to the islands.We thank the Australian Marine National Facility (MNF) for its support in the form of sea time on RV Investigator , support personnel, scientific equipment, and data management. We also thank the captain, crew, and fellow scientists of RV Investigator voyage IN2016_V01. We also thank specifically the following: T. Martin, F. Cooke, S. L. Sow, N. Bax, J. Ford, and F. Althaus, CSIRO (Commonwealth Scientific and Industrial Research Organisation); Echoview Software Pty. Ltd. (Hobart, Australia); C. Dietz and C. Cook, Central Science Laboratory, University of Tasmania; C. Wilkinson and T. Baumberger, National Oceanic and Atmospheric Administration; R. Carey, University of Tasmania; T. Holmes, Institute for Marine and Antarctic Studies, University of Tasmania; N. Polmear; and A. Post, Geoscience Australia. The overall science of the project is supported by Australian Antarctic Science Program (AASP) grant 4338. E.S.' PhD research is supported by the Australian Research Council's Special Research Initiative Antarctic Gateway Partnership (Project ID SR140300001) and by an Australian Government Research Training Program Scholarship. S.C.J. is supported by iCRAG under SFI, European Regional Development Fund, and industry partners, as well as ANZIC‐IODP. J.M.W. is supported by ARC grant DE140100376 and DP180102280. This is PMEL publication number 4910. All IN2016_V01 data and samples acquired on IN2016_V01 are made publicly available in accordance with MNF policy

    Demonstration of surface electron rejection with interleaved germanium detectors for dark matter searches

    Full text link
    The following article appeared in Applied Physics Letters 103.16 (2013): 164105 and may be found at http://scitation.aip.org/content/aip/journal/apl/100/26/10.1063/1.4729825The SuperCDMS experiment in the Soudan Underground Laboratory searches for dark matter with a 9-kg array of cryogenic germanium detectors. Symmetric sensors on opposite sides measure both charge and phonons from each particle interaction, providing excellent discrimination between electron and nuclear recoils, and between surface and interior events. Surface event rejection capabilities were tested with two 210 Pb sources producing ∌130 beta decays/hr. In ∌800 live hours, no events leaked into the 8–115 keV signal region, giving upper limit leakage fraction 1.7 × 10−5 at 90% C.L., corresponding to < 0.6 surface event background in the future 200-kg SuperCDMS SNOLAB experiment.This work is supported in part by the National Science Foundation (Grant Nos. AST-9978911, NSF-0847342, PHY-1102795,NSF-1151869, PHY-0542066, PHY-0503729, PHY-0503629, PHY-0503641, PHY-0504224, PHY-0705052,PHY-0801708, PHY-0801712, PHY-0802575, PHY-0847342, PHY-0855299, PHY-0855525, and PHY-1205898), by the Department of Energy (Contract Nos. DE-AC03-76SF00098, DE-FG02-92ER40701, DE-FG02-94ER40823,DE-FG03-90ER40569, DE-FG03-91ER40618, and DESC0004022),by NSERC Canada (Grant Nos. SAPIN 341314 and SAPPJ 386399), and by MULTIDARK CSD2009-00064 and FPA2012-34694. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359, while SLAC is operated under Contract No. DE-AC02-76SF00515 with the United States Department of Energy

    Development and validation of a targeted gene sequencing panel for application to disparate cancers

    Get PDF
    Next generation sequencing has revolutionised genomic studies of cancer, having facilitated the development of precision oncology treatments based on a tumour’s molecular profile. We aimed to develop a targeted gene sequencing panel for application to disparate cancer types with particular focus on tumours of the head and neck, plus test for utility in liquid biopsy. The final panel designed through Roche/Nimblegen combined 451 cancer-associated genes (2.01 Mb target region). 136 patient DNA samples were collected for performance and application testing. Panel sensitivity and precision were measured using well-characterised DNA controls (n = 47), and specificity by Sanger sequencing of the Aryl Hydrocarbon Receptor Interacting Protein (AIP) gene in 89 patients. Assessment of liquid biopsy application employed a pool of synthetic circulating tumour DNA (ctDNA). Library preparation and sequencing were conducted on Illumina-based platforms prior to analysis with our accredited (ISO15189) bioinformatics pipeline. We achieved a mean coverage of 395x, with sensitivity and specificity of >99% and precision of >97%. Liquid biopsy revealed detection to 1.25% variant allele frequency. Application to head and neck tumours/cancers resulted in detection of mutations aligned to published databases. In conclusion, we have developed an analytically-validated panel for application to cancers of disparate types with utility in liquid biopsy

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    Get PDF
    Abstract: Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM−/− patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors

    Phase IIB Trial of Oral Midostaurin (PKC412), the FMS-Like Tyrosine Kinase 3 Receptor (FLT3) and Multi-Targeted Kinase Inhibitor, in Patients With Acute Myeloid Leukemia and High-Risk Myelodysplastic Syndrome With Either Wild-Type or Mutated FLT3

    No full text
    Purpose Mutations leading to constitutive activation of the FMS-like tyrosine kinase 3 receptor (FLT3) occur in blasts of 30% of patients with acute myeloid leukemia (AML). Midostaurin (PKC412; N-benzoylstaurosporin) is a multitargeted tyrosine kinase inhibitor, with demonstrated activity in patients with AML/myelodysplastic syndrome (MDS) with FLT3 mutations. Patients and Methods Ninety-five patients with AML or MDS with either wild-type (n = 60) or mutated (n = 35) FLT3 were randomly assigned to receive oral midostaurin at 50 or 100 mg twice daily. The drug was discontinued in the absence of response at 2 months, disease progression, or unacceptable toxicity. Response was defined as complete response, partial response (PR), hematologic improvement, or reduction in peripheral blood or bone marrow blasts by ≄ 50% (BR). Results The rate of BR for the population in whom efficacy could be assessed (n = 92) was 71% in patients with FLT3-mutant and 42% in patients with FLT3 wild-type. One PR occurred in a patient with FLT3-mutant receiving the 100-mg dose regimen. Both doses were well-tolerated; there were no differences in toxicity or response rate according to the dose of midostaurin. Conclusion These results suggest that midostaurin has hematologic activity in both patients with FLT3-mutant and wild-type. The degree of clinical activity observed supports additional studies that combine midostaurin and other agents such as chemotherapy especially in FLT3-mutant AML
    corecore