429 research outputs found

    Crossing mucosal barriers for non-invasive protein delivery: a vitamin B12-mediated approach

    Get PDF
    Mucosal delivery of biotherapeutics as a non-invasive means of delivery could potentially be enhanced using nanoscale therapeutic carriers. However, nanoparticles do not readily cross the mucosal barriers, with the epithelium severely restricting their translocation into the systemic circulation. Translocation of nanocarriers across the mucosae may be improved by employing ligands capable of exploiting receptor-mediated cell uptake processes. This work explores the potential of vitamin B12 transport pathway for mucosal delivery of B12-decorated model nanoparticles and investigates the cell trafficking pathways involved in these processes. Cyanocobalamin (vitamin B12) was chemically modified to produce the α-ω-aminohexylcarbamate B12 derivative – as a suitable bioconjugate – which was then conjugated to fluorescent, carboxy-functional nanoparticles (<200 nm). These systems were applied to intestinal Caco-2 monolayers, expressing the relevant proteins involved in B12 trafficking and endocytic processes. Vitamin B12-conjugated nanoparticles demonstrated notably increased cell uptake and transport capacities in Caco-2 monolayers, compared to their unconjugated counterparts. Importantly, the cell uptake of B12-conjugated nanoparticles occurred via a pathway that was different to that used by both soluble B12 and unmodified nanoparticles. B12-conjugated nanoparticles circumnavigated the lysosomal compartment and were transported by a route perturbed by caveolae-specific inhibitors, unlike the clathrin-mediated trafficking of soluble vitamin B12. These previously unreported observations are important and have potential implications in the field of bioconjugate and nanocarrier-mediated drug delivery. Epithelial cell uptake and transport of B12-conjugated nanoparticles was also investigated in airway-derived Calu-3 cells, shown to express the B12-intrinsic factor receptor, cubilin. B12-nanoparticles showed markedly larger cell uptake and transport capacities in Calu-3 layers, with B12-conjugation dramatically influencing the intracellular trafficking of the particles in a similar way to Caco-2 cells. The B12 endocytotic machinery therefore shows potential for delivery of nanocarrier-associated therapeutics across the airways. Present work also aimed to establish methods for the production of stable nano-sized protein crystals displaying a slow drug release profile, based on evidence that protein therapeutics which are formulated in this manner, offer beneficial drug-delivery properties and can be targeted using biological ligands. Nano- and micron-sized insulin crystals were prepared by an adaptation of the batch crystallisation approach. The crystals were stabilised using a chemical crosslinker, namely β-[Tris(hydroxymethyl) phosphino] propionic acid (THPP). The resulting insulin crystals were generally stable in the absence of crystalisation buffer, displayed a slow-release profile, with the released insulin retaining its biological activity. This study therefore shows that formulating protein bioactives in this form is possible and may provide a promising strategy to develop biotherapeutics with improved drug delivery properties

    Management of the South Coast Purse Seine Fishery

    Get PDF
    This paper has presented a strategy for moving the management of the small pelagics fishery off the south coast to management of the whole fishery, which facilitates a more biologically sound and economically stable fishery

    Stellar structure and compact objects before 1940: Towards relativistic astrophysics

    Full text link
    Since the mid-1920s, different strands of research used stars as "physics laboratories" for investigating the nature of matter under extreme densities and pressures, impossible to realize on Earth. To trace this process this paper is following the evolution of the concept of a dense core in stars, which was important both for an understanding of stellar evolution and as a testing ground for the fast-evolving field of nuclear physics. In spite of the divide between physicists and astrophysicists, some key actors working in the cross-fertilized soil of overlapping but different scientific cultures formulated models and tentative theories that gradually evolved into more realistic and structured astrophysical objects. These investigations culminated in the first contact with general relativity in 1939, when J. Robert Oppenheimer and his students George Volkoff and Hartland Snyder systematically applied the theory to the dense core of a collapsing neutron star. This pioneering application of Einstein's theory to an astrophysical compact object can be regarded as a milestone in the path eventually leading to the emergence of relativistic astrophysics in the early 1960s.Comment: 83 pages, 4 figures, submitted to the European Physical Journal

    A High Statistics Search for Ultra-High Energy Gamma-Ray Emission from Cygnus X-3 and Hercules X-1

    Full text link
    We have carried out a high statistics (2 Billion events) search for ultra-high energy gamma-ray emission from the X-ray binary sources Cygnus X-3 and Hercules X-1. Using data taken with the CASA-MIA detector over a five year period (1990-1995), we find no evidence for steady emission from either source at energies above 115 TeV. The derived upper limits on such emission are more than two orders of magnitude lower than earlier claimed detections. We also find no evidence for neutral particle or gamma-ray emission from either source on time scales of one day and 0.5 hr. For Cygnus X-3, there is no evidence for emission correlated with the 4.8 hr X-ray periodicity or with the occurrence of large radio flares. Unless one postulates that these sources were very active earlier and are now dormant, the limits presented here put into question the earlier results, and highlight the difficulties that possible future experiments will have in detecting gamma-ray signals at ultra-high energies.Comment: 26 LaTeX pages, 16 PostScript figures, uses psfig.sty to be published in Physical Review

    Non Linear Current Response of a Many-Level Tunneling System: Higher Harmonics Generation

    Full text link
    The fully nonlinear response of a many-level tunneling system to a strong alternating field of high frequency ω\omega is studied in terms of the Schwinger-Keldysh nonequilibrium Green functions. The nonlinear time dependent tunneling current I(t)I(t) is calculated exactly and its resonance structure is elucidated. In particular, it is shown that under certain reasonable conditions on the physical parameters, the Fourier component InI_{n} is sharply peaked at n=ΔEωn=\frac {\Delta E} {\hbar \omega}, where ΔE\Delta E is the spacing between two levels. This frequency multiplication results from the highly nonlinear process of nn photon absorption (or emission) by the tunneling system. It is also conjectured that this effect (which so far is studied mainly in the context of nonlinear optics) might be experimentally feasible.Comment: 28 pages, LaTex, 7 figures are available upon request from [email protected], submitted to Phys.Rev.

    The Pitt Bacteremia Score Predicts Mortality in Nonbacteremic Infections

    Get PDF
    Background. Predicting mortality risk in patients is important in research settings. The Pitt bacteremia score (PBS) is commonly used as a predictor of early mortality risk in patients with bloodstream infections (BSIs). We determined whether the PBS predicts 14-day inpatient mortality in nonbacteremia carbapenem-resistant Enterobacteriaceae (CRE) infections. Methods. Patients were selected from the Consortium on Resistance Against Carbapenems in Klebsiella and Other Enterobacteriaceae, a prospective, multicenter, observational study. We estimated risk ratios to analyze the predictive ability of the PBS overall and each of its components individually. We analyzed each component of the PBS in the prediction of mortality, assessed the appropriate cutoff value for the dichotomized score, and compared the predictive ability of the qPitt score to that of the PBS. Results. In a cohort of 475 patients with CRE infections, a PBS 4 was associated with mortality in patients with nonbacteremia infections (risk ratio [RR], 21.9 95% confidence interval [CI], 7.0, 68.8) and with BSIs (RR, 6.0 95% CI, 2.5, 14.4). In multivariable analysis, the hypotension, mechanical ventilation, mental status, and cardiac arrest parameters of the PBS were independent risk factors for 14-day all-cause inpatient mortality. The temperature parameter as originally calculated for the PBS was not independently associated with mortality. However, a temperature < 36.0° C vs 36° C was independently associated with mortality. A qPitt score 2 had similar discrimination as a PBS 4 in nonbacteremia infections. Conclusions. Here, we validated that the PBS and qPitt score can be used as reliable predictors of mortality in nonbacteremia CRE infections

    Colistin Versus Ceftazidime-Avibactam in the Treatment of Infections Due to Carbapenem-Resistant Enterobacteriaceae

    Get PDF
    Background The efficacy of ceftazidime-Avibactam-a cephalosporin-β-lactamase inhibitor combination with in vitro activity against Klebsiella pneumoniae carbapenemase-producing carbapenem-resistant Enterobacteriaceae (CRE)-compared with colistin remains unknown. Methods Patients initially treated with either ceftazidime-Avibactam or colistin for CRE infections were selected from the Consortium on Resistance Against Carbapenems in Klebsiella and other Enterobacteriaceae (CRACKLE), a prospective, multicenter, observational study. Efficacy, safety, and benefit-risk analyses were performed using intent-To-Treat analyses with partial credit and the desirability of outcome ranking approaches. The ordinal efficacy outcome was based on disposition at day 30 after starting treatment (home vs not home but not observed to die in the hospital vs hospital death). All analyses were adjusted for confounding using inverse probability of treatment weighting (IPTW). Results Thirty-eight patients were treated first with ceftazidime-Avibactam and 99 with colistin. Most patients received additional anti-CRE agents as part of their treatment. Bloodstream (n = 63; 46%) and respiratory (n = 30; 22%) infections were most common. In patients treated with ceftazidime-Avibactam versus colistin, IPTW-Adjusted all-cause hospital mortality 30 days after starting treatment was 9% versus 32%, respectively (difference, 23%; 95% bootstrap confidence interval, 9%-35%; P =.001). In an analysis of disposition at 30 days, patients treated with ceftazidime-Avibactam, compared with those treated within colistin, had an IPTW-Adjusted probability of a better outcome of 64% (95% confidence interval, 57%-71%). Partial credit analyses indicated uniform superiority of ceftazidime-Avibactam to colistin. Conclusions Ceftazidime-Avibactam may be a reasonable alternative to colistin in the treatment of K. pneumoniae carbapenemase-producing CRE infections. These findings require confirmation in a randomized controlled trial

    Fusion measurements of 12C+12C at energies of astrophysical interest

    Get PDF
    The cross section of the 12C+12C fusion reaction at low energies is of paramount importance for models of stellar nucleosynthesis in different astrophysical scenarios, such as Type Ia supernovae and Xray superbursts, where this reaction is a primary route for the production of heavier elements. In a series of experiments performed at Argonne National Laboratory, using Gammasphere and an array of Silicon detectors, measurements of the fusion cross section of 12C+12C were successfully carried out with the γ and charged-particle coincidence technique in the center-of-mass energy range of 3-5 MeV. These were the first background-free fusion cross section measurements for 12C+12C at energies of astrophysical interest. Our results are consistent with previous measurements in the high-energy region; however, our lowest energy measurement indicates a fusion cross section slightly lower than those obtained with other techniques

    Precambrian non-marine stromatolites in alluvial fan deposits, the Copper Harbor Conglomerate, upper Michigan

    Full text link
    Laminated cryptalgal carbonates occur in the Precambrian Copper Harbor Conglomerate of northern Michigan, which was deposited in the Keweenawan Trough, an aborted proto-oceanic rift. This unit is composed of three major facies deposited by braided streams on a large alluvial-fan complex. Coarse clastics were deposited in braided channels, predominantly as longitudinal bars, whereas cross-bedded sandstones were deposited by migrating dunes or linguoid bars. Fine-grained overbank deposits accumulated in abandoned channels. Gypsum moulds and carbonate-filled cracks suggest an arid climate during deposition. Stromatolites interstratified with these clastic facies occur as laterally linked drapes over cobbles, as laterally linked contorted beds in mudstone, as oncolites, and as poorly developed mats in coarse sandstones. Stromatolites also are interbedded with oolitic beds and intraclastic conglomerates. Stromatolitic microstructure consists of alternating detrital and carbonate laminae, and open-space structures. Radial-fibrous calcite fans are superimposed on the laminae. The laminae are interpreted as algal in origin, whereas the origin of the radial fibrous calcite is problematic. The stromatolites are inferred to have grown in lakes which occupied abandoned channels on the fan surface. Standing water on a permeable alluvial fan in an arid climate requires a high water table maintained by high precipitation, or local elevation of the water table, possibly due to the close proximity of a lake. Occurrence of stromatolites in the upper part of the Copper Harbor Conglomerate near the base of the lacustrine Nonesuch Shale suggests that these depositional sites may have been near the Nonesuch Lake.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72022/1/j.1365-3091.1983.tb00713.x.pd
    corecore