8,914 research outputs found

    The conceptus induces a switch in protein expression and activities of superoxide dismutase 1 and 2 in the sheep endometrium during early pregnancy

    Get PDF
    Acknowledgements We thank Philippe Bolifraud (INRA, France), Krawiec Angele, Sandra Grange, Laurence Puillet-Anselme (CHU Grenoble, France) and Margaret Fraser (Aberdeen, UK) for their expert technical assistance. The authors also thank the staff of the sheep sheds of Jouy-en-Josas (INRA, France). The authors would also like to thank the anonymous reviewers for their close examination of this article and their useful comments. Funding This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.Peer reviewedPostprin

    The Equilibrium Distribution of Gas Molecules Adsorbed on an Active Surface

    Get PDF
    We evaluate the exact equilibrium distribution of gas molecules adsorbed on an active surface with an infinite number of attachment sites. Our result is a Poisson distribution having mean X=μPPsPeX = {\mu P P_s \over P_e}, with μ\mu the mean gas density, Ps P_s the sticking probability, PeP_e the evaporation probability in a time interval τ\tau, and PP Smoluchowski's exit probability in time interval τ\tau for the surface in question. We then solve for the case of a finite number of attachment sites using the mean field approximation, recovering in this case the Langmuir isotherm.Comment: 14 pages done in late

    The Solubility and Heat of Solution of Succinic Acid in Water and the Paraffin Alcohols

    Get PDF
    The following is the report of an investigation undertaken for the purpose of collecting further information concerning the influence of solvent upon certain specific properties of solutions. The solvents chosen, including water, represent the lower homologues of the paraffin alcohol series

    Strong coupling in the Kondo problem in the low-temperature region

    Full text link
    The magnetic field dependence of the average spin of a localized electron coupled to conduction electrons with an antiferromagnetic exchange interaction is found for the ground state. In the magnetic field range μH0.5Tc\mu H\sim 0.5 T_c (TcT_c is the Kondo temperature) there is an inflection point, and in the strong magnetic field range μHTc\mu H\gg T_c, the correction to the average spin is proportional to (Tc/μH)2(T_c/\mu H)^2. In zero magnetic field, the interaction with conduction electrons also leads to the splitting of doubly degenerate spin impurity states

    Phenotypic variation and differentiated gene expression of Australian plants in response to declining rainfall

    Get PDF
    Declining rainfall is projected to have negative impacts on the demographic performance of plant species. Little is known about the adaptive capacity of species to respond to drying climates, and whether adaptation can keep pace with climate change. In fire-prone ecosystems, episodic recruitment of perennial plant species in the first year postfire imposes a specific selection environment, offering a unique opportunity to quantify the scope for adaptive response to climate change. We examined the growth of seedlings of four fire-killed species under control and drought conditions for seeds from populations established in years following fire receiving average-to-above-average winter rainfall, or well-below-average winter rainfall. We show that offspring of plants that had established under drought had more efficient water uptake, and/or stored more water per unit biomass, or developed denser leaves, and all maintained higher survival in simulated drought than did offspring of plants established in average annual rainfall years. Adaptive phenotypic responses were not consistent across all traits and species, while plants that had established under severe drought or established in years with average-to-above-average rainfall had an overall different physiological response when growing either with or without water constraints. Seedlings descended from plants established under severe drought also had elevated gene expression in key pathways relating to stress response. Our results demonstrate the capacity for rapid adaptation to climate change through phenotypic variation and regulation of gene expression. However, effective and rapid adaptation to climate change may vary among species depending on their capacity to maintain robust populations under multiple stresses

    Ariel 6 measurements of ultra-heavy cosmic ray fluxes in the region 34 or = Z or = 48

    Get PDF
    The Ariel VI satellite was launched by NASA on a Scout rocket on 3rd June 1979 from Wallops Island, Virginia, USA, into a near circular 625 km orbit inclined at 55 deg. It carried a spherical cosmic ray detector designed by a group from Bristol University. A spherical aluminum vessel of diameter 75 cm contains a gas scintillation mixture and a thin spherical shell of Pilot 425 plastic, and forms a single optical cavity viewed by 16 photomultipliers. Particle tracks through the detector may be characterized by their impact parameter p and by whether or not they pass through the cup of plastic scintillator placed between the sphere and the spacecraft body (referred to below as the Anti-Coincidence Detector or ACD). Individual particle charges are determined by separately measuring the gas scintillation and the Cerenkov emission from the plastic shell. This is possible because of the quite different distribution in time of these emissions

    Sustainability of water resources management in the Indus Basin under changing climatic and socio economic conditions

    Get PDF
    Pakistan is highly dependent on water resources originating in the mountain sources of the upper Indus for irrigated agriculture which is the mainstay of its economy. Hence any change in available resources through climate change or socio-economic factors could have a serious impact on food security and the environment. In terms of both ratio of withdrawals to runoff and per-capita water availability, Pakistan's water resources are already highly stressed and will become increasingly so with projected population changes. Potential changes to supply through declining reservoir storage, the impact of waterlogging and salinity or over-abstraction of groundwater, or reallocations for environmental remediation of the Indus Delta or to meet domestic demands, will reduce water availability for irrigation. <br><br> The impact of climate change on resources in the Upper Indus is considered in terms of three hydrological regimes – a nival regime dependent on melting of winter snow, a glacial regime, and a rainfall regime dependent on concurrent rainfall. On the basis of historic trends in climate, most notably the decline in summer temperatures, there is no strong evidence in favour of marked reductions in water resources from any of the three regimes. Evidence for changes in trans-Himalayan glacier mass balance is mixed. Sustainability of water resources appears more threatened by socio-economic changes than by climatic trends. Nevertheless, analysis and the understanding of the linkage of climate, glaciology and runoff is still far from complete; recent past climate experience may not provide a reliable guide to the future

    Surface code quantum computing by lattice surgery

    Full text link
    In recent years, surface codes have become a leading method for quantum error correction in theoretical large scale computational and communications architecture designs. Their comparatively high fault-tolerant thresholds and their natural 2-dimensional nearest neighbour (2DNN) structure make them an obvious choice for large scale designs in experimentally realistic systems. While fundamentally based on the toric code of Kitaev, there are many variants, two of which are the planar- and defect- based codes. Planar codes require fewer qubits to implement (for the same strength of error correction), but are restricted to encoding a single qubit of information. Interactions between encoded qubits are achieved via transversal operations, thus destroying the inherent 2DNN nature of the code. In this paper we introduce a new technique enabling the coupling of two planar codes without transversal operations, maintaining the 2DNN of the encoded computer. Our lattice surgery technique comprises splitting and merging planar code surfaces, and enables us to perform universal quantum computation (including magic state injection) while removing the need for braided logic in a strictly 2DNN design, and hence reduces the overall qubit resources for logic operations. Those resources are further reduced by the use of a rotated lattice for the planar encoding. We show how lattice surgery allows us to distribute encoded GHZ states in a more direct (and overhead friendly) manner, and how a demonstration of an encoded CNOT between two distance 3 logical states is possible with 53 physical qubits, half of that required in any other known construction in 2D.Comment: Published version. 29 pages, 18 figure

    Exactly solvable extended Hubbard model

    Full text link
    In this work, we introduce long range version of the extended Hubbard model. The system is defined on a non-uniform lattice. We show that the system is integrable. The ground state, the ground state energies, the energy spectrum are also found for the system. Another long range version of the extended Hubbard model is also introduced on a uniform lattice, and this system is proven to be integrable.Comment: 10 pages, Latex. Typoes are fixed in this revised versio

    Decoherence and dephasing errors caused by D.C. Stark effect in rapid ion transport

    Full text link
    We investigate the error due to D.C. Stark effect for quantum information processing for trapped ion quantum computers using the scalable architecture proposed in J. Res. Natl. Inst. Stan. 103, 259 (1998) and Nature 417, 709 (2002). As the operation speed increases, dephasing and decoherence due to the D.C. Stark effect becomes prominent as a large electric field is applied for transporting ions rapidly. We estimate the relative significance of the decoherence and dephasing effects and find that the latter is dominant. We find that the minimum possible of dephasing is quadratic in the time of flight, and an inverse cubic in the operational time scale. From these relations, we obtain the operational speed-range at which the shifts caused by D.C. Stark effect, no matter follow which trajectory the ion is transported, are no longer negligible. Without phase correction, the maximum speed a qubit can be transferred across a 100 micron-long trap, without excessive error, in about 10 ns for Calcium ion and 50 ps for Beryllium ion. In practice, the accumulated error is difficult to be tracked and calculated, our work gives an estimation to the range of speed limit imposed by D.C. Stark effect.Comment: 7 pages, 1 figure. v2: Title is changed in this version to make our argument more focused. Introduction is rewritten. A new section IV is added to make our point more prominent. v3: Title is changed to make our argument more specific. Abstract, introduction, and summary are revise
    corecore