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ARIEL VI MEASUREMENTS OF ULTRA-HEAVY COSMIC RAY FLUXES

IN THE REGION 34 < Z < 48m
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R.N.F. Walker, A. Worley and A.M. Gay

H.H. Wills Physics Laboratory, University of Bristol,

Tyndall Avenue, Bristol BS8 ITL, England.

i. Introduction. The Ariel VI satellite was launched by NASA on a Scout

rocket on 3rd June 1979 from Wallops Island, Virginia, USA, into a near-

circular 625 km orbit inclined at 55 ° . It carried a spherical cosmic ray

detector designed by a group from Bristol University. The salient

features of this detector are shown in Fig. I.
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Fig. 1 Schematic cross-section of Ariel VI Cosmic ray detector

A spherical aluminium vessel of diameter 75 cm contains a gas

scintillation mixture and a thin spherical shell of Pilot 425 plastic,

and forms a single optical cavity viewed by 16 photomultipliers. Particle

tracks through the detector may be characterised by their impact para-

meter p and by whether or not they pass through the cup of plastic

scintillator placed between the sphere and the spacecraft body (referred

to below as the Anti-Coincidence Detector or ACD). Individual particle

charges are determined by separately measuring the gas scintillation and

the Cerenkov emission from the plastic shell. This is possible because of

the quite different distribution in time of these emissions. See also (i).

The last data from Ariel VI was received in February 1982, but

spacecraft power supply problems had restricted data collection to only

427 of the days in orbit, with actual experiment live-time equivalent

to 352 complete days at 1OO% efficiency.

2. Data Selection. Results from a first analysis of part of the Ariel VI

data set have already been reported (2). The present analysis covers all

available high charge data collected by Ariel VI. It includes improvements

to the cut-off map used to apply cut-off labels to individual events and

new event timings which allow for imperfections in the spacecraft clock

by using measured cosmic ray fluxes as clock calibrations. Event timing,

- and the subsequent allocation of an inferred local vertical cut-off to an

individual event, is important for the Ariel VI data analysis because a

small number of low energy iron nuclei, which can stop in the detector at
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A spherical aluminium vessel of diameter 75 cm contains a gas 
scintillation mixture and a thin spherical shell of Pilot 425 plastic, 
and forms a single optical cavity viewed by 16 photomultipliers. Particle 
tracks through the detector may be characterised by their impact para­
meter p and by whether or not they pass through the cup of plastic 
scintillator placed between the sphere and the spacecraft body (referred 
to below as the Anti-Coincidence Detector or ACD). Individual particle 
charges are determined by separately measuring the gas scintillation and 
the Cerenkov emission from the plastic shell. This is possible because of 
the quite different distribution in time of these emissions. See also (1). 

The last data from Ariel VI was received in February 1982, but 
spacecraft power supply problems had restricted data collection to only 
427 of the days in orbit, with actual experiment live-time equivalent 
to 352 complete days at 100% efficiency. 

2. Data Selection. Results from a first analysis of part of the .Ariel VI 
data set have already been reported (2). The present analysis covers all 
available high charge data collected by Ariel VI. It includes improvements 
to the cut-off map used to apply cut-off labels to individual events and 
new event timings which allow for imperfections in the spacecraft clock 
by using measured cosmic ray fluxes as clock calibrations. Event timing, 
and the subsequent allocation of an inferred local vertical cut-off to an 
individual event, is important for the Ariel VI data analysis because a 
small number of low energy iron nuclei, which can stop in the detector at 
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high impact p_rameters, can simulate b%ghe_ ch_ge$ up to a limit of

apparent charge 47. Hence, for abundance measurements, in the charge

region 34 < Z < 48, data can only be accepted from those regions where

the earth's magnetic field excludes such low energy iron nuclei. This is

empirically determined to be for vertical cut-offs greater than 3.4 GV.

Finally, with the improved statistics from the complete mission,

it is seen that events which produce a signal in the ACD (hits) have a

cut-off distribution indicative of pollution from electron showers to the

highest charges, though hardly statistically significant for z > 70_ The

hit spectrum also shows evidence of additional fragmentation due to pass-

age through the body of the spacecraft. Consequently these ACD hits

require separate analysis and are not included in the results quoted in

this paper or in the companion paper 0G4.4-4.

3. Results. Fig. 2 shows the distribution of accepted data for this

charge region. Numbers given are actual numbers of detected events, with

two provisos: i) a correction has been made for the exponential tail

associated with the relativistic rise in energy loss for charges 30,31,32
using measured abundances from HEA03-C2 (3); this affects the first five

bins: ii) some events in the lower part of this charge region have been

collected as events of second highest priority (i), at lower efficiency,

and in this case scaling has been made event by event to an equivalent

100% efficiency; this effect has become small by bin 8 onwards.
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Fig. 2 Distribution of accepted data for deter n/nation of 33 _ Z _ 48

abundances.Dotted insert shows distribution of 34Se content

from Table i.

During data re-analysis small improvements have been made to

charge allocation as a function of gain setting and an energy dependent

non-Z 2 correction has been applied to all data. This is discussed further

in 0G4.4-4. Its effects are in any case small for Z < 48.

in order to allot events to individual charge species the effects

of the resolution function of the experiment must be removed from the data

in a deconvolution procedure. The resolution function is well determined
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abundances.Dotted insert shows distribution of 34Se content 
from Table 1. 

During data re-analysis smal,l improvements have been made to 
charge allocation as a function of gain setting and an energy dependent 
non-Z2 correction has been applied to all data. This is discussed further 
in OG4.4-4. Its effects are in any case small for Z < 48. 

in order to allot events to individual charge species the effects 
of the resolution function of the experiment must be removed from the data 
in a deconvolution procedure. The resolution function is well determined 
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Table 1 Elemental Abundances for 33 < Z < 48

Ariel VI Comparison Data

Deconvolved Corrected to Charge I HEA03-C3 SS + FIPD propagations
Z Numbers outside expt pairs Brewster Letaw

et al. et al.

26 3.46 x 10 6 10 6 10 6 10 6 10 6

33 (81 + 21) (21 + 6) 72 + 5 [9]<19 ii 68

34 180 -+ 29 51 -+ 8 ._ 43 +i0 55
- 6

3584 + 2524 + 7 _ 43 + 4 [7]<14 10 ] 3136 71 + 23 19 + 6 23 + 8 24
- 5

3722 + 20 6 + 5 ] 38 + 4 [9]<16 20 _38 ii0 + 24 32 + 7 35 +i0 47
- 6 46

- 4

41 33 + 22 9 + 6 ] 19 + 4 [3]< 6 2.5 __ i042 35+13 10_+4 8_+2 6.5

44 12 + 8

4645 13 -+149_+12 ] 6 -+ 2 ] 6.0

4847 14 +139_+13 ] 6 + 2 ] 4.9

for 26Fe and is found to fit well to a Gaussian part and an exponential
tail to high charge (2). In addition the shapes of the abundance peaks at

12Mg, 14Si and 2oCa allow the variance of the Gaussian to be separated
into a Poisson part and a part varying as Z2. A resolution function may

then be constructed for any higher charge by extrapolation. The resolu-

tion function for 34Se is shown as a dotted insert in Fig. 2. Using these
- functions the observed data may be deconvolved into a best-fit set of

abundances, giving the numbers shown in column 2 of Table i. These numbers

yield the curve shown in Fig. 2 when operated on by the appropriate

resolution functions. The fit is seen to be reasonably good, though the
Z = 38 peak appears offset. The decrease in numbers of detected events

around Z = 43 is too steep for the measured resolution function of the

experiment. This fluctuation results in a best-fit abundance for Z = 43

which is approximately lh s.d. below zero. This value was set at zero and

not varied in subsequent fitting procedures.

4. Discussion. The limited charge resolution achieved by the Ariel VI

detector reveals only one clear charge peak in this region, at Z = 38,

and only one odd charge, Z = 35, is strictly necessary to obtain a good
- fit to the data. Nevertheless the best-fit abundances in column 3, which

have been corrected for fragmentation in the experiment, form the most

convenient comparison with other work. The errors shown are the excur-
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sions needed in a given abundance to produce a change of one unit of

X 2, the two neighbouring abundances being adjusted to keep the total area

constant. They may be regarded as approximations to 1 s.d. errors for

individual charges. With this procedure, fluctuations are strongly anti-

-correlated between neighbouring abundances and a significant decrease in

the errors results when abundances for charge pairs are constructed as in

column 4.

The best-fit values and upper limits presented by the HEAO3-C3

group at Bangalore (4) are shown in column 5, and agreement between the

two experiments for individual charges is seen to be uniformly good,

though the integrated total is rather higher for the Ariel VI data.

Columns 6 and 7 of the table quote results from two propagations of

Cameron (1982) solar system abundances (5) through about 6 gmcm -2 of

ISM with slightly different assumed First Ionisation Potential Dependence

(Brewster et al. (6) and Letaw et al. (7)). Agreement between observed

cosmic ray abundances and propagated SS is seen to be reasonably good in

this area, with the FIPD of ref. (7), which saturates at potentials less

than 7 eV, producing better agreement around charge 38.
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its lifetime by the UK Science and Engineering Research Council. A team

from the Appleton Laboratory was responsible for project management and

raw data handling when in orbit. Main spacecraft contractor was MSDS,
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personnel within the Bristol Physics Department and partially by

Eritish Aerospace, Filton. The electronics for the Bristol experiment was

built by Pye Telecommunications Ltd., Cambridge. We are indebted to all

of the above for a successful mission.

6. References.

i. P.H. Fowler et al., 1979, Proc. 16th ICRC, Kyoto, 12, 338

2. P.H. Fowler et al., 1981, Nature, 291, 45

3. B. Byrnak et al., 1983, Proc. 18th ICRC, Bangalore, _, 29

4. W.R. Binns et al., 1983, Proc. 18th ICRC, Bangalore, OGI-16

5. A.G.W. Cameron, 1982, in "Essays in Nuclear Astrophysics"

ed. C.A. Barnes et al.

6. N.R. Brewster et al., 1983, Ap. J. 264, 324

7. J.R. Letaw et al., 1984, Ap. J. 279, 144

118 
OG4.4-3 

sions needed in a given abundance to produce a change of one unit of 
X2 , the two neighbouring abundances being adjusted to keep the total area 
constant. They may be regarded as approximations to 1 s.d. errors for 
individual charges. With this procedure, fluctuations are strongly anti­
-correlated between neighbouring abundances and a significant decrease in 
the errors results when abundances for charge pairs are constructed as in 
column 4. 

The best-fit values and upper limits presented by the HEA03-C3 
group at Bangalore (4) are shown in column 5, and agreement between the 
two experiments for individual charges is seen to be uniformly good, 
though the integrated total is rather higher for the Ariel VI data. 
Columns 6 and 7 of the table quote results from two propagations of 
Cameron (1982) solar system abundances (5) through about 6 gmcm-2 of 
ISM with slighDly different assumed First Ionisation Potential Dependence 
(Brewster et al. (6) and Letaw et al. (7». Agreement between observed 
cosmic ray abundances and propagated SS is seen to be reasonably good in 
this area, with the FIPD of ref. (7), which saturates at potentials less 
than 7 eV, producing better agreement around charge 38. 

5. Acknowledgements. The Ariel VI project has been supported throughout 
its lifetime by the UK Science and Engineering Research Council. A team 
from the Appleton Laboratory was responsible for project management and 
raw data handling when in orbit. Main spacecraft contractor was MSDS, 
Portsmouth. The Bristol experiment was built partially by support 
personnel within the Bristol Physics Department and partially by 
Eritish Aerospace, Filton. The electronics for the Bristol experiment was 
built by Pye Telecommunications Ltd., Cambridge. We are indebted to all 
of the above for a successful mission. 

6. References. 

1. P.H. Fowler et al., 1979, Proc. 16th ICRC, Kyoto, 12, 338 
2. P.H. Fowler et al., 1981, Nature, 291, 45 
3. B. Byrnak et al., 1983, Proc. 18th ICRC, Bangalore, ~, 29 
4. W.R. Binns et al., 1983, Proc. 18th ICRC, Bangalore, OGl-16 
5. A.G.W. Cameron, 1982, in "Essays in Nuclear Astrophysics" 

ed. C.A. Barnes et al. 
6. N.R. Brewster et al., 1983, Ap. J. 264, 324 
7. J.R. Letaw et al., 1984, Ap. J. 279, 144 




