206 research outputs found

    Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics

    Get PDF
    Optogenetic methods developed over the past decade enable unprecedented optical activation and silencing of specific neuronal cell types. However, light scattering in neural tissue precludes illuminating areas deep within the brain via free-space optics; this has impeded employing optogenetics universally. Here, we report an approach surmounting this significant limitation. We realize implantable, ultranarrow, silicon-based photonic probes enabling the delivery of complex illumination patterns deep within brain tissue. Our approach combines methods from integrated nanophotonics and microelectromechanical systems, to yield photonic probes that are robust, scalable, and readily producible en masse. Their minute cross sections minimize tissue displacement upon probe implantation. We functionally validate one probe design in vivo with mice expressing channelrhodopsin-2. Highly local optogenetic neural activation is demonstrated by recording the induced responseā€”both by extracellular electrical recordings in the hippocampus and by two-photon functional imaging in the cortex of mice coexpressing GCaMP6

    Total knee replacement after high tibial osteotomy: Time-to-event analysis and predictors

    Get PDF
    Ā© 2021 Joule Inc. or its licensors. BACKGROUND: An important aim of high tibial osteotomy (HTO) is to prevent or delay the need for total knee replacement (TKR). We sought to estimate the frequency and timing of conversion from HTO to TKR and the factors associated with it. METHODS: We prospectively evaluated patients with osteoarthritis (OA) of the knee who underwent medial opening wedge HTO from 2002 to 2014 and analyzed the cumulative incidence of TKR in July 2019. The presence or absence of TKR on the HTO limb was identified from the orthopedic surgery reports and knee radiographs contained in the electronic medical records for each patient at London Health Sciences Centre. We used cumulative incidence curves to evaluate the primary outcome of time to TKR. We used multivariable Cox proportional hazards analysis to assess potential preoperative predictors including radiographic disease severity, malalignment, correction size, pain, sex, age, body mass index (BMI) and year of surgery. RESULTS: Among 556 patients who underwent 643 HTO procedures, the cumulative incidence of TKR was 5% (95% confidence interval [CI] 3%ā€“7%) at 5 years and 21% (95% CI 17%ā€“26%) at 10 years. With the Cox proportional hazards multivariable model, the following preoperative factors were significantly associated with an increased rate of conversion: radiographic OA severity (adjusted hazard ratio [HR] 1.96, 95% CI 1.12ā€“3.45), pain (adjusted HR 0.85, 95% CI 0.75ā€“0.96)], female sex (adjusted HR 1.67, 95% CI 1.08ā€“2.58), age (adjusted HR 1.50 per 10 yr, 95% CI 1.17ā€“1.93) and BMI (adjusted HR 1.31 per 5 kng/m2, 95% CI 1.12ā€“1.53). INTERPRETATION: We found that 79% of knees did not undergo TKR within 10 years after undergoing medial opening wedge HTO. The strongest predictor of conversion to TKR is greater radiographic disease at the time of HTO

    Dreaming of drams: Authenticity in Scottish whisky tourism as an expression of unresolved Habermasian rationalities

    Get PDF
    In this paper, the production of whisky tourism at both independently owned and corporately owned distilleries in Scotland is explored by focusing on four examples (Arran, Glengoyne, Glenturret and Bruichladdich). In particular, claims of authenticity and Scottishness of Scottish whiskies through commercial materials, case studies, website-forum discussions and 'independent' writing about such whisky are analysed. It is argued that the globalisation and commodification of whisky and whisky tourism, and the communicative backlash to these trends typified by the search for authenticity, is representative of a Habermasian struggle between two irreconcilable rationalities. This paper will demonstrate that the meaning and purpose of leisure can be understood through such explorations of the tension between the instrumentality of commodification and the freedom of individuals to locate their own leisure lives in the lifeworld that remains. Ā© 2011 Taylor & Francis

    Nanophotonic Neural Probes for in vivo Light Sheet Imaging

    Get PDF
    We present implantable silicon neural probes with nanophotonic waveguide routing networks and grating emitters for light sheet imaging. Fluorescein beam profiles, fluorescent bead imaging, and fluorescence brain imaging in vivo are presented

    Nanophotonic Neural Probes for in vivo Light Sheet Imaging

    Get PDF
    We present implantable silicon neural probes with nanophotonic waveguide routing networks and grating emitters for light sheet imaging. Fluorescein beam profiles, fluorescent bead imaging, and fluorescence brain imaging in vivo are presented

    Beam-Steering Nanophotonic Phased-Array Neural Probes

    Get PDF
    We demonstrate the first implantable nanophotonic neural probes with integrated silicon nitride phased arrays. Coherent beam-steering is achieved in brain tissue by wavelength tuning. Beam profiles, optogenetic stimulation, and functional imaging are validated in vitro

    Implantable photonic neural probes for light-sheet fluorescence brain imaging

    Get PDF
    Significance: Light-sheet fluorescence microscopy (LSFM) is a powerful technique for highspeed volumetric functional imaging. However, in typical light-sheet microscopes, the illumination and collection optics impose significant constraints upon the imaging of non-transparent brain tissues. We demonstrate that these constraints can be surmounted using a new class of implantable photonic neural probes. Aim: Mass manufacturable, silicon-based light-sheet photonic neural probes can generate planar patterned illumination at arbitrary depths in brain tissues without any additional micro-optic components. Approach: We develop implantable photonic neural probes that generate light sheets in tissue. The probes were fabricated in a photonics foundry on 200-mm-diameter silicon wafers. The light sheets were characterized in fluorescein and in free space. The probe-enabled imaging approach was tested in fixed, in vitro, and in vivo mouse brain tissues. Imaging tests were also performed using fluorescent beads suspended in agarose. Results: The probes had 5 to 10 addressable sheets and average sheet thicknesses <16 Ī¼m for propagation distances up to 300 Ī¼m in free space. Imaging areas were as large as ā‰ˆ240 Ī¼m Ɨ 490 Ī¼m in brain tissue. Image contrast was enhanced relative to epifluorescence microscopy. Conclusions: The neural probes can lead to new variants of LSFM for deep brain imaging and experiments in freely moving animals

    Implantable photonic neural probes for light-sheet fluorescence brain imaging

    Get PDF
    Significance: Light-sheet fluorescence microscopy is a powerful technique for high-speed volumetric functional imaging. However, in typical light-sheet microscopes, the illumination and collection optics impose significant constraints upon the imaging of non-transparent brain tissues. Here, we demonstrate that these constraints can be surmounted using a new class of implantable photonic neural probes. Aim: Mass manufacturable, silicon-based light-sheet photonic neural probes can generate planar patterned illumination at arbitrary depths in brain tissues without any additional micro-optic components. Approach: We develop implantable photonic neural probes that generate light sheets in tissue. The probes were fabricated in a photonics foundry on 200 mm diameter silicon wafers. The light sheets were characterized in fluorescein and in free space. The probe-enabled imaging approach was tested in fixed and in vitro mouse brain tissues. Imaging tests were also performed using fluorescent beads suspended in agarose. Results: The probes had 5 to 10 addressable sheets and average sheet thicknesses < 16 Ī¼m for propagation distances up to 300 Ī¼m in free space. Imaging areas were as large as ā‰ˆ 240 Ī¼m x 490 Ī¼m in brain tissue. Image contrast was enhanced relative to epifluorescence microscopy. Conclusions: The neural probes can lead to new variants of light-sheet fluorescence microscopy for deep brain imaging and experiments in freely-moving animals

    Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics

    Get PDF
    Optogenetic methods developed over the past decade enable unprecedented optical activation and silencing of specific neuronal cell types. However, light scattering in neural tissue precludes illuminating areas deep within the brain via free-space optics; this has impeded employing optogenetics universally. Here, we report an approach surmounting this significant limitation. We realize implantable, ultranarrow, silicon-based photonic probes enabling the delivery of complex illumination patterns deep within brain tissue. Our approach combines methods from integrated nanophotonics and microelectromechanical systems, to yield photonic probes that are robust, scalable, and readily producible en masse. Their minute cross sections minimize tissue displacement upon probe implantation. We functionally validate one probe design in vivo with mice expressing channelrhodopsin-2. Highly local optogenetic neural activation is demonstrated by recording the induced responseā€”both by extracellular electrical recordings in the hippocampus and by two-photon functional imaging in the cortex of mice coexpressing GCaMP6

    Design and implementation of the next generation electron beam resists for the production of EUVL photomasks

    Get PDF
    A new class of resist materials has been developed that is based on a family of heterometallic rings. The work is founded on a Monte Carlo simulation that utilizes a secondary and Auger electron generation model to design resist materials for high resolution electron beam lithography. The resist reduces the scattering of incident electrons to obtain line structures that have a width of 15 nm on a 40 nm pitch. This comes at the expense of lowering the sensitivity of the resist, which results in the need for large exposure doses. Low sensitivity can be dramatically improved by incorporating appropriate functional alkene groups around the metal-organic core, for example by replacing the pivalate component with a methacrylate molecule. This increases the resist sensitivity by a factor of 22.6 and demonstrates strong agreement between the Monte Carlo simulation and the experimental results. After the exposure and development processes, what remains of the resist material is a metal-oxide that is extremely resistant to silicon dry etch conditions; the etch selectivity has been measured to be 61:1
    • ā€¦
    corecore