5 research outputs found

    Transition from metabolic adaptation to maladaptation of the heart in obesity: role of apelin.

    No full text
    International audienceBackground/Objectives:Impaired energy metabolism is the defining characteristic of obesity-related heart failure. The adipocyte-derived peptide apelin has a role in the regulation of cardiovascular and metabolic homeostasis and may contribute to the link between obesity, energy metabolism and cardiac function. Here we investigate the role of apelin in the transition from metabolic adaptation to maladaptation of the heart in obese state.Methods:Adult male C57BL/6J, apelin knock-out (KO) or wild-type mice were fed a high-fat diet (HFD) for 18 weeks. To induce heart failure, mice were subjected to pressure overload after 18 weeks of HFD. Long-term effects of apelin on fatty acid (FA) oxidation, glucose metabolism, cardiac function and mitochondrial changes were evaluated in HFD-fed mice after 4 weeks of pressure overload. Cardiomyocytes from HFD-fed mice were isolated for analysis of metabolic responses.Results:In HFD-fed mice, pressure overload-induced transition from hypertrophy to heart failure is associated with reduced FA utilization (P<0.05), accelerated glucose oxidation (P<0.05) and mitochondrial damage. Treatment of HFD-fed mice with apelin for 4 weeks prevented pressure overload-induced decline in FA metabolism (P<0.05) and mitochondrial defects. Furthermore, apelin treatment lowered fasting plasma glucose (P<0.01), improved glucose tolerance (P<0.05) and preserved cardiac function (P<0.05) in HFD-fed mice subjected to pressure overload. In apelin KO HFD-fed mice, spontaneous cardiac dysfunction is associated with reduced FA oxidation (P<0.001) and increased glucose oxidation (P<0.05). In isolated cardiomyocytes, apelin stimulated FA oxidation in a dose-dependent manner and this effect was prevented by small interfering RNA sirtuin 3 knockdown.Conclusions:These data suggest that obesity-related decline in cardiac function is associated with defective myocardial energy metabolism and mitochondrial abnormalities. Furthermore, our work points for therapeutic potential of apelin to prevent myocardial metabolic abnormalities in heart failure paired with obesity.International Journal of Obesity advance online publication, 12 August 2014; doi:10.1038/ijo.2014.122

    Activation of catalase by apelin prevents oxidative stress-linked cardiac hypertrophy.

    Get PDF
    International audienceAdipose tissue secretes a variety of bioactive factors, which can regulate cardiomyocyte hypertrophy via reactive oxygen species (ROS). In the present study we investigated whether apelin affects ROS-dependent cardiac hypertrophy. In cardiomyocytes apelin inhibited the hypertrophic response to 5-HT and oxidative stress induced by 5-HT- or H(2)O(2) in a dose-dependent manner. These effects were concomitant to the increase in mRNA expression and activity of catalase. Chronic treatment of mice with apelin attenuated pressure-overload-induced left ventricular hypertrophy. The prevention of hypertrophy by apelin was associated with increased myocardial catalase activity and decreased plasma lipid hydroperoxide, as an index of oxidative stress. These results show that apelin behaves as a catalase activator and prevents cardiac ROS-dependent hypertrophy

    Apelin treatment increases complete Fatty Acid oxidation, mitochondrial oxidative capacity, and biogenesis in muscle of insulin-resistant mice.

    Get PDF
    International audienceBoth acute and chronic apelin treatment have been shown to improve insulin sensitivity in mice. However, the effects of apelin on fatty acid oxidation (FAO) during obesity-related insulin resistance have not yet been addressed. Thus, the aim of the current study was to determine the impact of chronic treatment on lipid use, especially in skeletal muscles. High-fat diet (HFD)-induced obese and insulin-resistant mice treated by an apelin injection (0.1 ÎŒmol/kg/day i.p.) during 4 weeks had decreased fat mass, glycemia, and plasma levels of triglycerides and were protected from hyperinsulinemia compared with HFD PBS-treated mice. Indirect calorimetry experiments showed that apelin-treated mice had a better use of lipids. The complete FAO, the oxidative capacity, and mitochondrial biogenesis were increased in soleus of apelin-treated mice. The action of apelin was AMP-activated protein kinase (AMPK) dependent since all the effects studied were abrogated in HFD apelin-treated mice with muscle-specific inactive AMPK. Finally, the apelin-stimulated improvement of oxidative capacity led to decreased levels of acylcarnitines and enhanced insulin-stimulated glucose uptake in soleus. Thus, by promoting complete lipid use in muscle of insulin-resistant mice through mitochondrial biogenesis and tighter matching between FAO and the tricarboxylic acid cycle, apelin treatment could contribute to insulin sensitivity improvement

    Apelin prevents cardiac fibroblast activation and collagen production through inhibition of sphingosine kinase 1

    No full text
    Activation of cardiac fibroblasts and their differentiation into myofibroblasts is a key event in the progression of cardiac fibrosis that leads to end-stage heart failure. Apelin, an adipocyte-derived factor, exhibits a number of cardioprotective properties; however, whether apelin is involved in cardiac fibroblast activation and myofibroblast formation remains unknown. The aim of this study was to determine the effects of apelin in activated cardiac fibroblasts, the potential related mechanisms and impact on cardiac fibrotic remodelling process
    corecore