18 research outputs found

    Role of carbonate burial in Blue Carbon budgets

    Get PDF
    Calcium carbonates (CaCO 3 ) often accumulate in mangrove and seagrass sediments. As CaCO 3 production emits CO 2 , there is concern that this may partially offset the role of Blue Carbon ecosystems as CO 2 sinks through the burial of organic carbon (C org ). A global collection of data on inorganic carbon burial rates (C inorg , 12% of CaCO 3 mass) revealed global rates of 0.8 TgC inorg yr −1 and 15–62 TgC inorg yr −1 in mangrove and seagrass ecosystems, respectively. In seagrass, CaCO 3 burial may correspond to an offset of 30% of the net CO 2 sequestration. However, a mass balance assessment highlights that the C inorg burial is mainly supported by inputs from adjacent ecosystems rather than by local calcification, and that Blue Carbon ecosystems are sites of net CaCO 3 dissolution. Hence, CaCO 3 burial in Blue Carbon ecosystems contribute to seabed elevation and therefore buffers sea-level rise, without undermining their role as CO 2 sinks. © 2019, The Author(s)

    State-dependent risk-taking by green sea turtles mediates top-down effects of tiger shark intimidation in a marine ecosystem

    Get PDF
    1. A predictive framework of community and ecosystem dynamics that applies across systems has remained elusive, in part because non-consumptive predator effects are often ignored. Further, it is unclear how much individual-level detail community models must include. 2. Previous studies of short-lived species suggest that state-dependent decisions add little to our understanding of community dynamics. Body condition-dependent decisions made by long-lived herbivores under risk of predation, however, might have greater community-level effects. This possibility remains largely unexplored, especially in marine environments. 3. In the relatively pristine seagrass community of Shark Bay, Australia, we found that herbivorous green sea turtles (Chelonia mydas Linnaeus, 1758) threatened by tiger sharks (Galeocerdo cuvier Peron and LeSueur, 1822) select microhabitats in a condition-dependent manner. Turtles in poor body condition selected profitable, high-risk microhabitats, while turtles in good body condition, which are more abundant, selected safer, less profitable microhabitats. When predation risk was low, however, turtles in good condition moved into more profitable microhabitats. 4. Condition-dependent use of space by turtles shows that tiger sharks modify the spatio-temporal pattern of turtle grazing and their impacts on ecosystem dynamics (a trait-mediated indirect interaction). Therefore, state-dependent decisions by individuals can have important implications for community dynamics in some situations. 5. Our study suggests that declines in large-bodied sharks may affect ecosystems more substantially than assumed when non-lethal effects of these top predators on mesoconsumers are not considered explicitly

    Seagrass sediments as a global carbon sink:isotope constraints

    Get PDF
    8 páginas, 4 figuras, 1 tabla.Seagrass meadows are highly productive habitats found along many of the world's coastline, providing important services that support the overall functioning of the coastal zone. The organic carbon that accumulates in seagrass meadows is derived not only from seagrass production but from the trapping of other particles, as the seagrass canopies facilitate sedimentation and reduce resuspension. Here we provide a comprehensive synthesis of the available data to obtain a better understanding of the relative contribution of seagrass and other possible sources of organic matter that accumulate in the sediments of seagrass meadows. The data set includes 219 paired analyses of the carbon isotopic composition of seagrass leaves and sediments from 207 seagrass sites at 88 locations worldwide. Using a three source mixing model and literature values for putative sources, we calculate that the average proportional contribution of seagrass to the surface sediment organic carbon pool is ∼50%. When using the best available estimates of carbon burial rates in seagrass meadows, our data indicate that between 41 and 66 gC m−2 yr−1 originates from seagrass production. Using our global average for allochthonous carbon trapped in seagrass sediments together with a recent estimate of global average net community production, we estimate that carbon burial in seagrass meadows is between 48 and 112 Tg yr−1, showing that seagrass meadows are natural hot spots for carbon sequestration.Finaciación proveniente de Florida Keys National Marine Sanctuary Water Quality Protection Program, de U.S. Environmental Protection Agency (contract X97468102-0), la National Science Foundation a través del programa Florida Coastal Everglades Long-Term Ecological Research en virtud de las concesiones DBI-0620409 y DEB-9910514, y Seagrass Recovery, Inc.Peer reviewe

    The use of surface alkaline phosphatase activity in the seagrass Posidonia oceanica as a biomarker of eutrophication

    No full text
    7 páginas, 4 figuras, 2 tablas.Eutrophication is one of the most relevant man-induced changes occurring in coastal waters. The identification and assessment of specific responses to eutrophication in seagrasses can provide a useful tool for the detection of changes in the water quality in coastal zones, given the wide range of distribution of these organisms. In this study, we combine a correlational (across-sites comparison) and a manipulative (fertilization experiment) approach to evaluate the usefulness and potential of alkaline phosphatase activity (APA) in the endemic Mediterranean seagrass Posidonia oceanica as an eutrophication biomarker. Our results showed that APA decreases promptly following nutrient additions, the response being maintained except during the winter period. APA also varies across natural meadows under different levels of nutrient discharges at scales relevant for monitoring purposes. AP activity seems to be an optimal ‘physiological biomarker’ that responds promptly and reliably to a pulse of eutrophication exposure. However, other considerations, such as the seasonality (the response disappears in winter), suggest its use with some caution and, as far as possible, as a complement of other bio-indicators.This study received financial support from the project Plan Nacional I + D (REN2002-04020-C02/MAR).Peer reviewe
    corecore