174 research outputs found

    La biomécanique des plantes ou " Comment les plantes tiennent debout ? "

    Get PDF
    La biomécanique des plantes est née d'une approche interdisciplinaire. Elle regroupe ainsi des biologistes, des forestiers ou des agronomes, et des mécaniciens (des matériaux et des structures et plus récemment des fluides). Elle s'intéresse à la façon dont les plantes se portent et croissent. En particulier comment les plantes terrestres croissent en hauteur " contre " la gravité et dans le vent ; mais aussi comment les plantes aquatiques et les algues se développent dans les courants

    Mécanique de l'arbre sur pied : les relevés dendrométriques classiques pour quantifier les efforts gravitationnels supportés par un tronc - leurs limites

    Full text link
    Le fût d'un arbre sur pied est soumis à l'action de la pesanteur, qui induit un effet de flexion sur un arbre déséquilibré. La qualification de cette action réclame donc d'évaluer non seulement la masse de l'arbre, mais aussi son déséquilibre, c'est-à-dire la position de son centre de gravité dans un plan horizontal. Une méthode d'estimation de cette position à partir de relevés dendrométriques simples (mesure d'une inclinaison du fût, de huit rayons de la projection au sol du houppier) est proposée. Appliquée à 9 peupliers, elle permet de classer les individus en trois groupes : droits, inclinés, flexueux. Confrontée aux résultats d'un essai mécanique de suppression de la masse supportée, elle apparaît suffisante pour estimer la direction de l'effort de flexion sur les individus de conformation simple, droits ou inclinés, mais doit être affinée dans les cas plus complexes. L'essai comme la modélisation confirment en outre la prépondérance des effets de flexion sur ceux de compression, même sur des individus apparemment équilibrés. (Résumé d'auteur

    Tension wood and opposite wood in 21 tropical rain forest species. 2. Comparison of some anatomical and ultrastructural criteria

    Get PDF
    International audienceThe anatomy of tension wood and opposite wood was compared in 21 tropical rain forest trees from 21 species belonging to 18 families from French Guyana. Wood secimens were taken from the upper and lower sides of naturally titled trees. Measurement of the growth stress level ensured that the two samples were taken from wood tissues in a different mechanical state: highly tensile-stressed wood on the upper side, called tension wood and normally tensile-stressed wood on the lower side, called opposite wood. Quantitative parameters relating to fibres and vessels were measured on transverse sections of both tension and opposite wood to check if certain criteria can easily discriminate the two kinds of wood. We observed a decrease in the frequency of vessels in the tension wood in all the trees studied. Other criteria concerning shape and surface area of the vessels, fibre diameter or cell wall thickness did not reveal any general trend.At the ultrastructural level, we observed that the microfibril angle in the tension wood sample was lower than in opposite wood in all the trees except one (Licania membranacea)

    Woody biomass production lags stem-girth increase by over one month in coniferous forests

    Get PDF
    Wood is the main terrestrial biotic reservoir for long-term carbon sequestration1, and its formation in trees consumes around 15% of anthropogenic carbon dioxide emissions each year2. However, the seasonal dynamics of woody biomass production cannot be quantified from eddy covariance or satellite observations. As such, our understanding of this key carbon cycle component, and its sensitivity to climate, remains limited. Here, we present high-resolution cellular based measurements of wood formation dynamics in three coniferous forest sites in northeastern France, performed over a period of 3 years. We show that stem woody biomass production lags behind stem-girth increase by over 1 month. We also analyse more general phenological observations of xylem tissue formation in Northern Hemisphere forests and find similar time lags in boreal, temperate, subalpine and Mediterranean forests. These time lags question the extension of the equivalence between stem size increase and woody biomass production to intra-annual time scales3–6. They also suggest that these two growth processes exhibit differential sensitivities to local environmental conditions. Indeed, in the wellwatered French sites the seasonal dynamics of stem-girth increase matched the photoperiod cycle, whereas those of woody biomass production closely followed the seasonal course of temperature. We suggest that forecasted changes in the annual cycle of climatic factors7 may shift the phase timing of stem size increase and woody biomass production in the future
    corecore